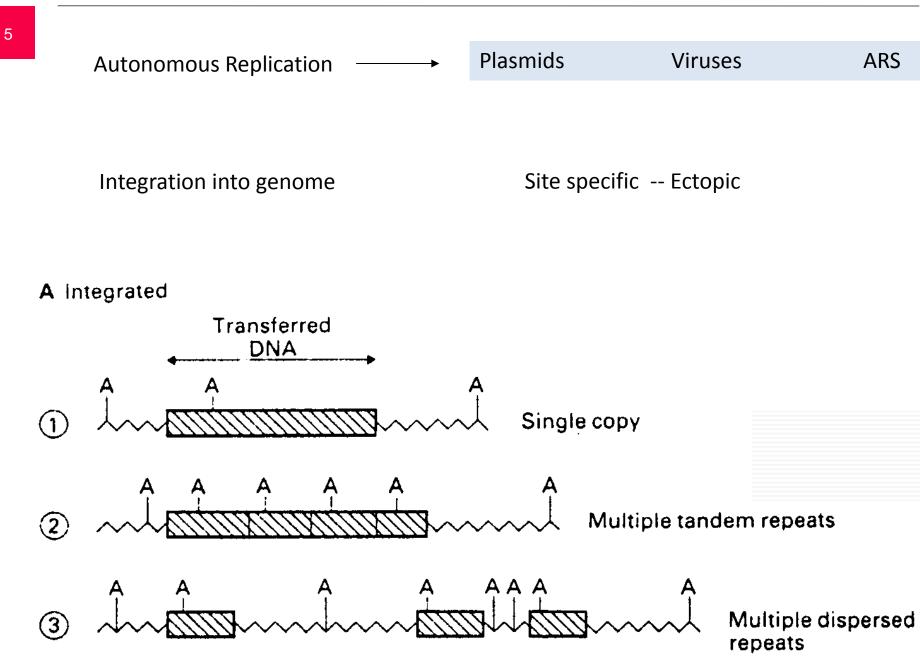

WISSEN • TECHNIK • LEIDENSCHAFT

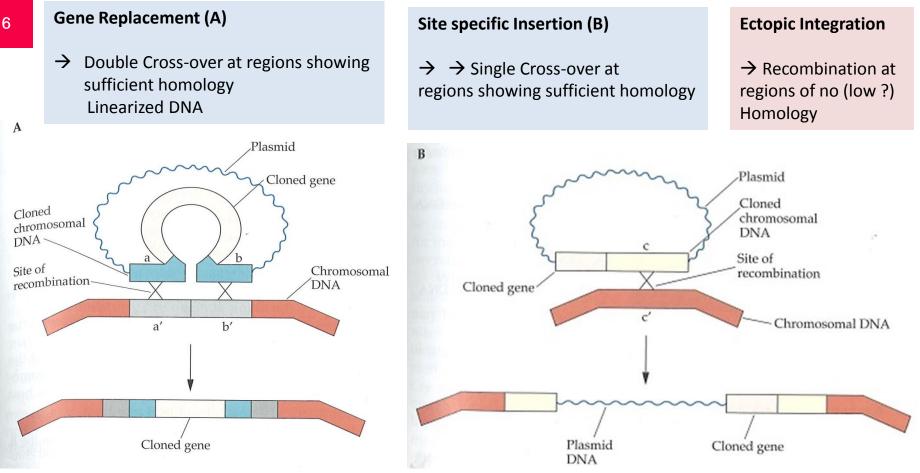
MOL.911 Molecular Biotechnology I Cloning and Expression

Vectors for Recombinant DNA Technology


Plasmids

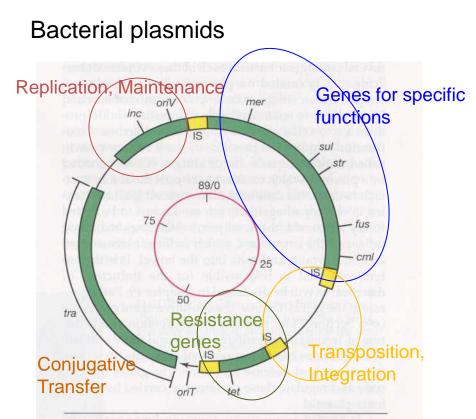
Autonomous Replication Integration into genome Shuttle Plasmids *E.coli* → Target host

Cosmids, Bacmids Plasmid – Bacteriophage Hybrids


Phages Bacteriophage Lambda Artificial Chromosomes YAC

Viruses Baculovirus – Insect Cells Retroviruses – Mammalian Cells

Integration – general steps


Integration of a cloned gene into a chromosomal site. (A) The cloned gene has been inserted, on a plasmid, in the middle of the cloned segment of DNA (ab) from the host chromosome. Homologous DNA pairing occurs between plasmid-borne DNA regions a and b and host chromosome DNA regions a 'and b', respectively. A double cross-over event (x-x) results in the integration of the cloned gene. (B) The cloned gene is inserted adjacent to the cloned DNA from the host chromosome (c). Homologous DNA pairing occurs between plasmid DNA region c and host chromosome DNA region c'. A single recombination event (x) within the paired c-c' DNA region results in the integration of the entire plasmid, including the cloned gene.

7 15.10.15

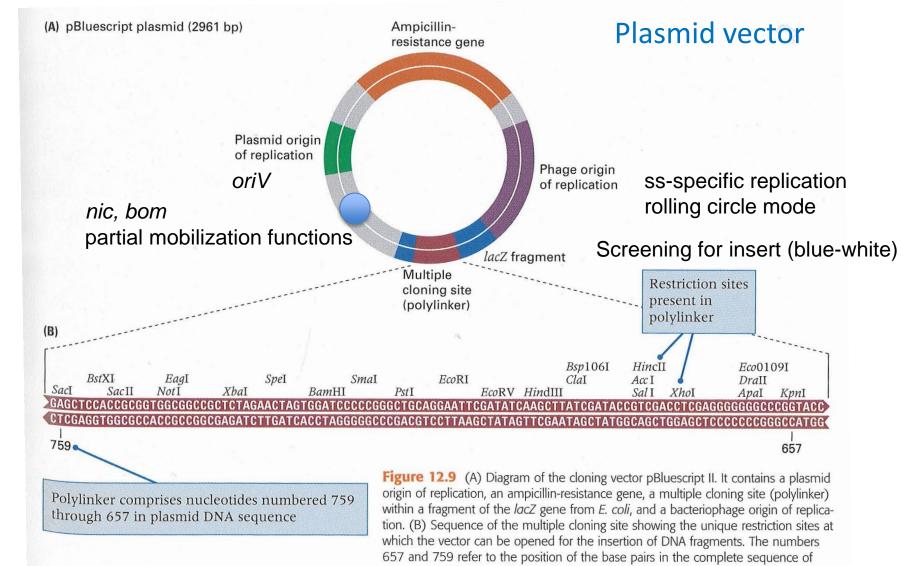
Plasmid vectors for bacteria

FIGURE 9.21 Genetic map of the resistance plasmid R100. The inner circle shows the size of the plasmid in kilobase pairs. The outer circle shows the location of major antibiotic resistance genes and other key functions: *inc*, incompatibility genes; *oriV*, origin of replication site; *oriT*, origin of conjugative transfer; *mer*, mercuric ion resistance; *sul*, sulfonamide resistance; *tet*, tetracycline resistance; *tra*, transfer functions. The locations of insertion sequences (IS) are also shown.

Replication

- Origin of replication (oriV)
- Regulatory functions for replication (rep, trf)
- \rightarrow copy number
- → Host range
- → incompatibility

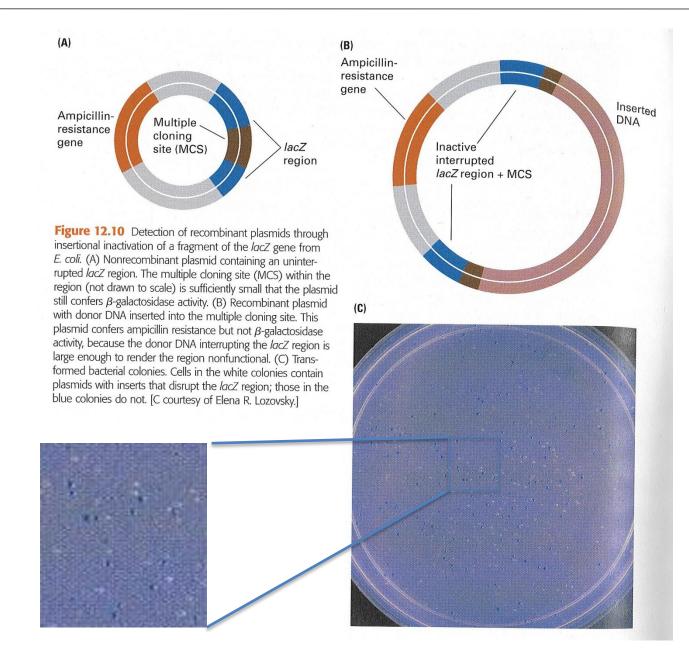
Maintenance


- Partitioning systems (par)
- Multimer resolution systems (*mrs*)
- Addiction systems (e.g. *hok-sok*)

→ Stable maintenance of plasmids upon cell division

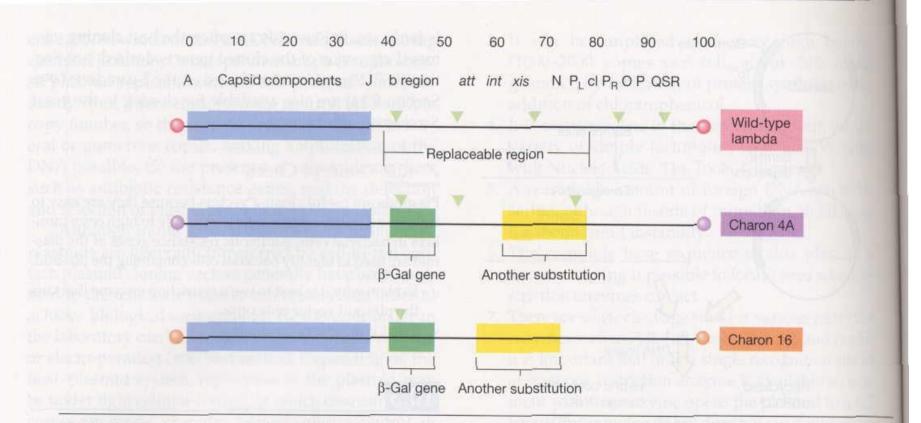
Conjugative transfer

- Complete Transfer regions (tra)
- Mobilization regons (mob, oriT, nic, bom)
- \rightarrow Autonomous In vivo transfer of plasmids
- → In vivo transfer mediated by helper functions



pBluescript. [Courtesy of Stratagene Cloning Systems, La Jolla, CA.]

Taken from: D.L. Hartl, E.W. Jones; GENETICS Analysis of Genes and Genomes, 6th Ed.; Jones and Bartlett



Taken from: D.L. Hartl, E.W. Jones; GENETICS Analysis of Genes and Genomes, 6th Ed.; Jones and Bartlett

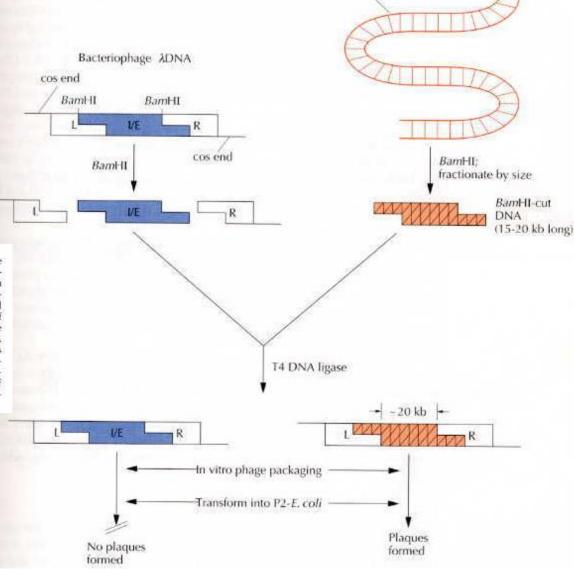

Bacteriophage Lambda Vectors

FIGURE 10.3 Molecular cloning with lambda. Abbreviated genetic map of bacteriophage lambda showing the cohesive ends as circles (\sim Figure 8.26). Charon 4A and 16 are both derivatives of lambda, which have various substitutions and deletions in the nonessential region. One of the substitutions in each case is a gene (β -Gal) that codes for the enzyme β -galactosidase, which permits detection of clones containing this phage. Whereas the wild-type lambda genome is 48.5 kilobase pairs, that for Charon 4A is 45.4 and that for Charon 16 is 41.7 kilobase pairs. The arrows (\checkmark) shown above the maps of each phage indicate the sites recognized by the restriction enzyme *Eco*RI.

Bacteriophage Lambda Vectors

Figure 4.17 Bacteriophage λ cloning system. Bacteriophage λ is engineered to have two BamHI sites that flank the I/E region of the bacteriophage λ genome. The extensions indicate the cos ends of the λ DNA. For cloning, the source DNA is cut with BamHI and fractionated by size to isolate pieces that are 15 to 20 kb long. The bacteriophage λ DNA is also cut with BamHI. The two DNA samples are mixed and treated with T4 DNA ligase. The ligation reaction mixture will contain a number of different DNA molecules, including (1) reconstituted bacteriophage λ and (2) the bacteriophage λ L and R regions with a 20-kb piece of DNA from the source DNA instead of the I/E region. These molecules are packaged into bacteriophage λ heads in vitro, and infective particles are formed after the addition of tail assemblies. After infection of *E. coli* cells that have P2 bacteriophage DNA integrated in their chromosomes, only the molecules with the R and L regions and a cloned -20-kb piece of DNA can replicate and form infectious bacteriophage λ . In this way, only the bacteriophage λ containing a DNA insert are perpetuated.

Source DNA

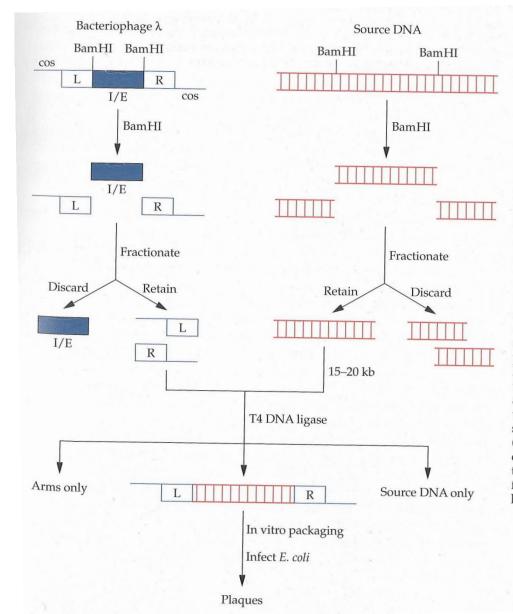
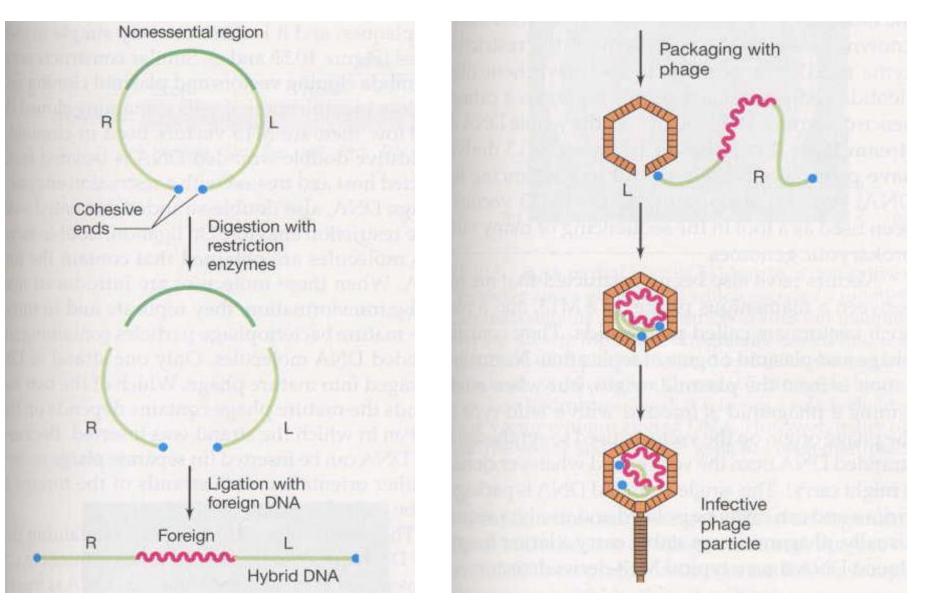
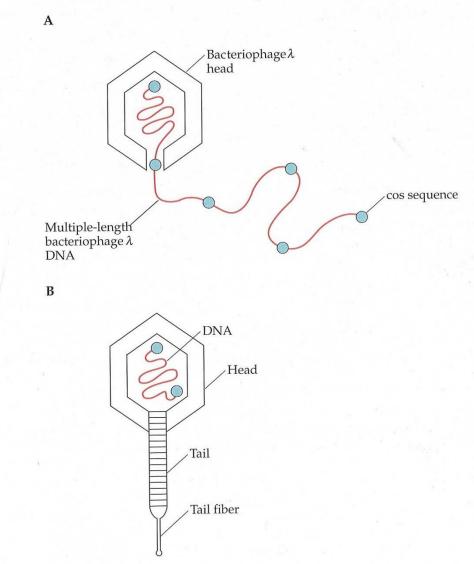
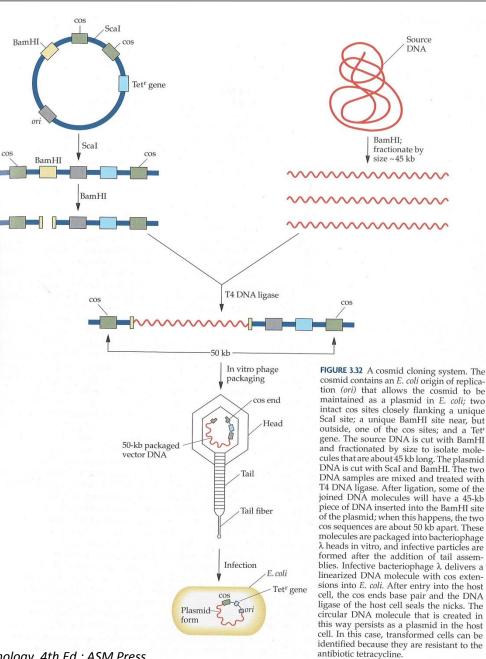



FIGURE 3.31 A bacteriophage λ cloning system. Bacteriophage $\hat{\lambda}$ is engineered to have two BamHI sites that flank the I/E region. For cloning, the source DNA is cut with BamHI and fractionated by size to isolate pieces that are about 15 to 20 kb long. The bacteriophage λ DNA is also cut with BamHI, and size fractionation removes the I/E segment. The L and R arms, plus the 15- to 20-kb source DNA molecules, are mixed with T4 DNA ligase. The ligation reaction produces a number of different DNA molecules, including ligated source DNA only, combined L and R arms only, and molecules that have a source DNA molecule flanked by L and R arms. The last molecules are packaged into bacteriophage heads in vitro, and infective particles are formed after the addition of tail assemblies. The recombined bacteriophage λ is perpetuated by infection of E. coli. Some 50-kb source DNA ligation products may be packaged into heads, but since this DNA lacks both a functional origin of replication and cos ends, it cannot be perpetuated. Other ligation products are either too small or too large to be packaged. For some bacteriophage λ cloning systems (not shown here), high packaging efficiency is achieved by setting the conditions of ligation to favor concatemer formation to imitate how the phage heads are normally filled.



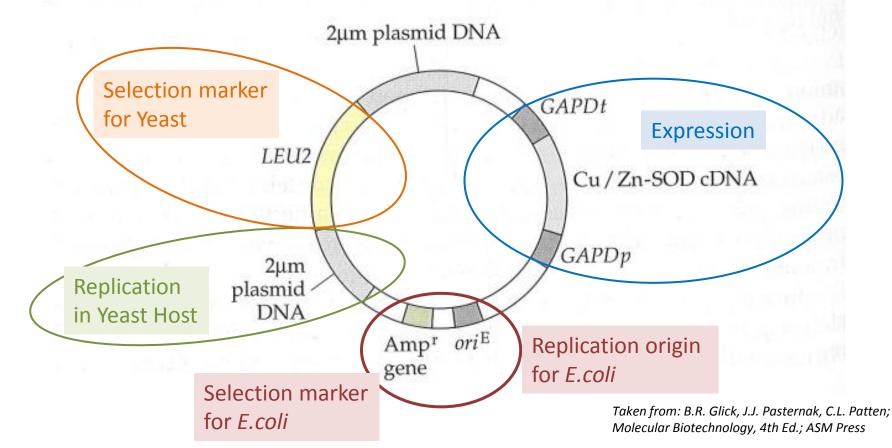
Cloning in Lambda Vectors

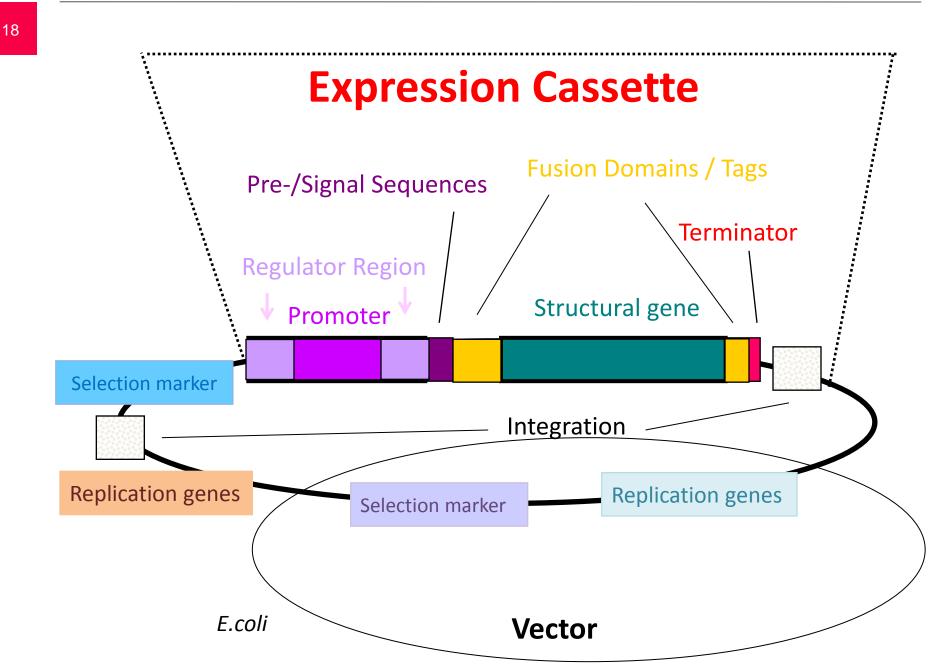
FIGURE 3.30 Packaging of bacteriophage λ DNA into heads during the lytic cycle. (A) DNA replication from the circular form of bacteriophage λ creates a linear form that has contiguous, multiple lengths (concatemers) of bacteriophage DNA with units of approximately 50 kb each. (B) Each newly assembled head is filled with a 50-kb unit of λ DNA before the tail assembly is attached.

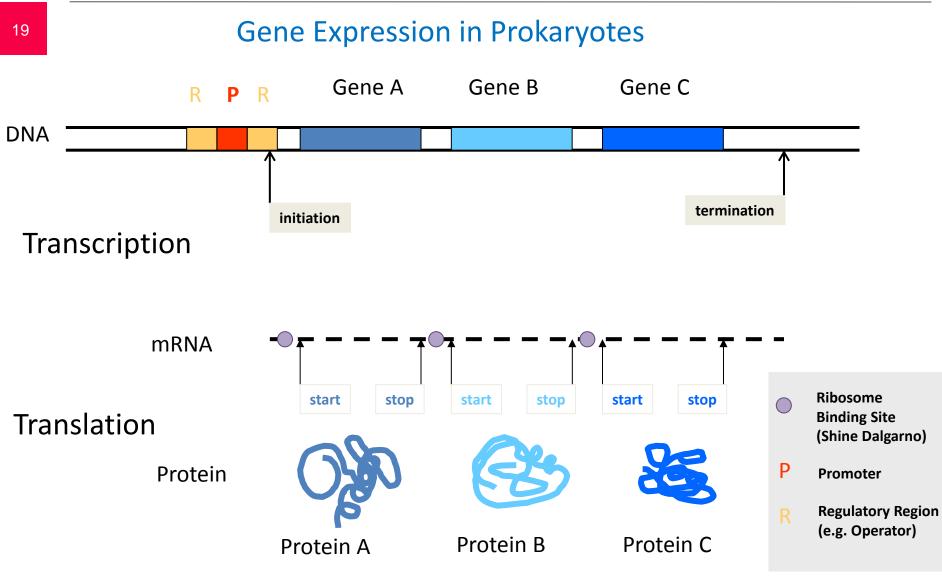


Cosmid vectors

Principle: Plasmid DNA Transfer via Phage infection


Resulting recombinant clone Contains self-replicating plasmid


E.coli – Saccharomyces cerevisiae Shuttle Vector


FIGURE 7.7 *S. cerevisiae* expression vector. The cDNA for human Cu/Zn-SOD was cloned between the promoter (*GAPDp*) and termination–polyadenylation sequence (*GAPDt*) of the *S. cerevisiae* glyceraldehyde phosphate dehydrogenase gene. The *LEU2* gene that was cloned between segments of the yeast 2µm plasmid DNA encodes a functional enzyme of the leucine biosynthesis pathway. The yeast origin of replication is included in the 2µm plasmid DNA. The ampicillin resistance (Amp^r) gene and the *E. coli* origin of replication (*ori*^E) are derived from plasmid pBR322.

Post-translational processing

Location in Genome \rightarrow Autonomous replication, Integration

Transcription Initiation → Promoters **Transcription Termination**

Regulatory Systems → positive/negative regulatory systems

Transcript Processing

RNA Structure

mRNA stability

Translation Initiation - Translation elongation

Codon usage

Post-translational modifications

Modification of AA-side chains: Glycosylation, Phosphorylation, etc Proteolytic Processing

Protein Folding

Disulfide bond formation

Assembly of subunits

Toxicity of gene producs

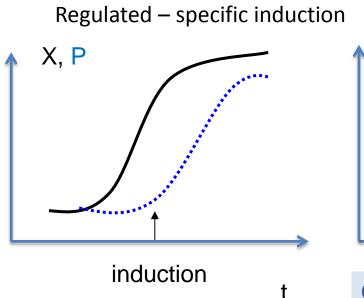
Protein degradation

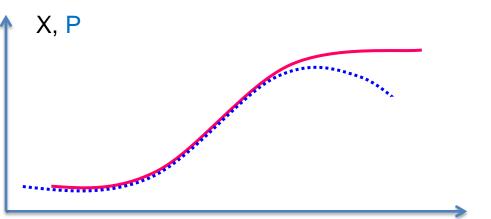
Localization

Intracellular Periplasmic Extracellular Membrane associated Organelle specific Surface display

Heterologous expression in prokaryotes – E.coli

Transcription


```
constitutive promoters
         regulated promoters
                   lambda p<sub>L</sub>, p<sub>R</sub>
                  lac, trp, tac. Trc, ara
                  T7, T5, T3
         termination
                  rrnB (T1,T2), trpt
                   Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
         elongation – codon usage
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Plasmid copy number and segregation
```

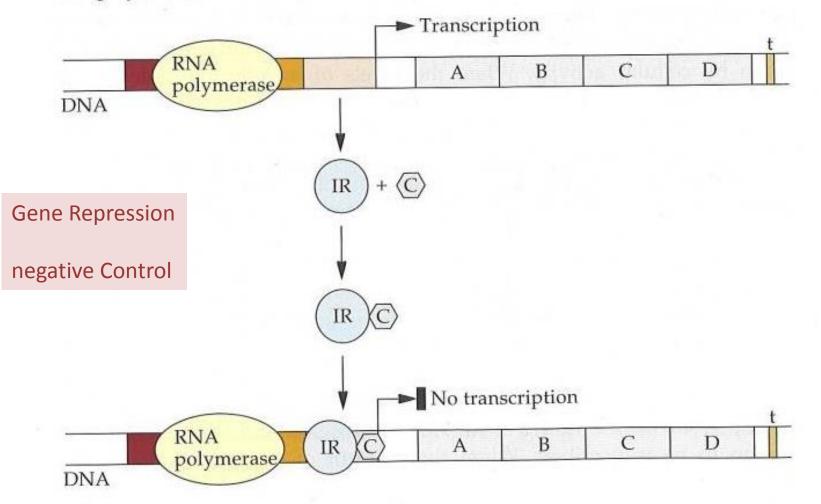


Regulated Promoters $\leftarrow ightarrow$ Constitutive Promoters

Both systems are used

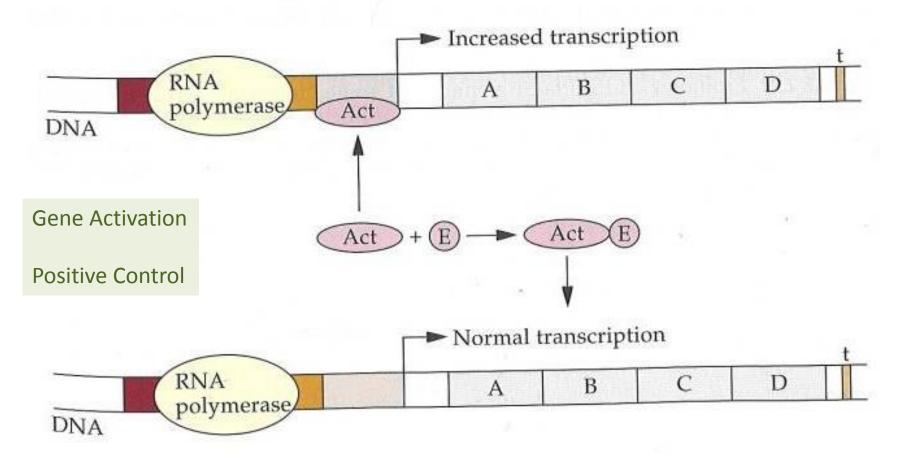
Preferred Combination: strong Promoters – tightly regulated

constitutive


Constitutive promoters: weak to medium activity

Regulated expression: Separation of growth phase and production phase \rightarrow High specific growth rate in growth phase Constitutive Expression: growth is impaired due to heavy metabolic load directed to expression of one specific protein → Overall low specific grothe rate → Lower overall productivity

Regulated Expression in Prokaryotes


FIGURE 2.25 Induction of the off state for transcription of a bacterial operon. The binding of a corepressor molecule (C) to an inactive repressor protein (IR) changes the conformation of the repressor protein. The corepressor–repressor protein complex (IR-C) binds to the operator region and blocks transcription of the operator by RNA polymerase.

Regulated Expression in Prokaryotes

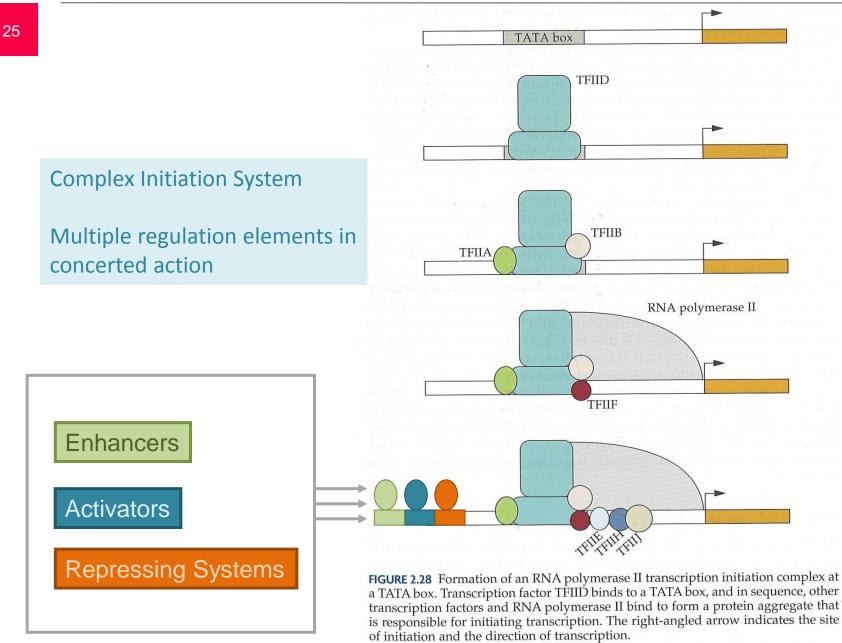
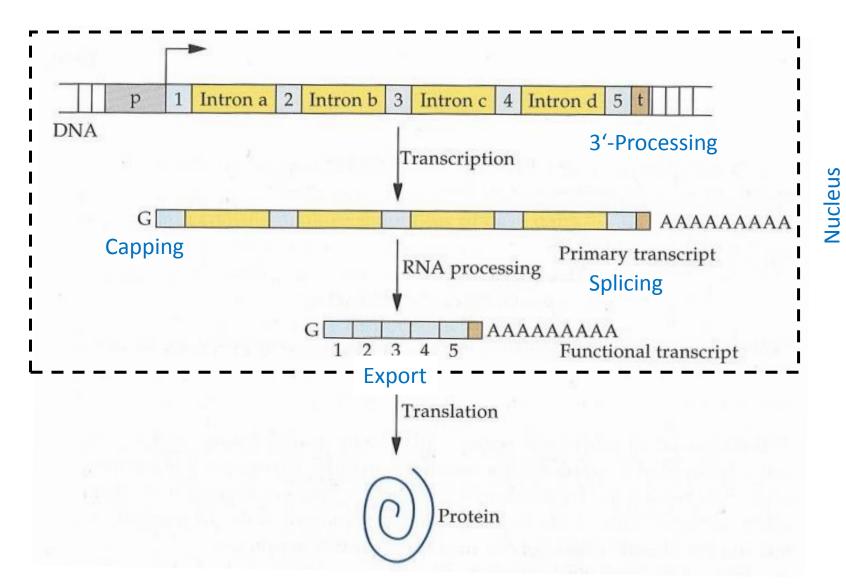
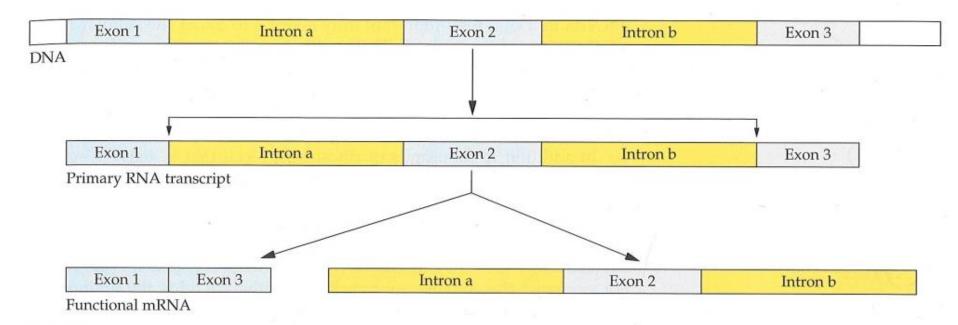
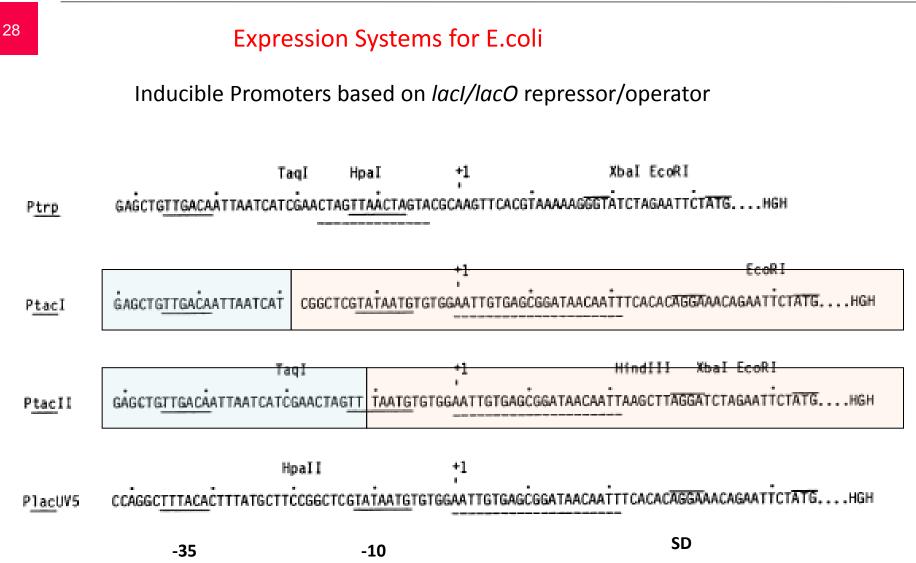


FIGURE 2.26 Activation and deactivation of a bacterial operon. An activator protein (Act) binds to an activating site and enhances the rate of transcription of the operon. When an effector molecule (E) binds to the activator protein, the Act–E complex does not bind to the activating site. The rate of transcription of the operon is diminished when the activating site is not occupied by the activating protein.

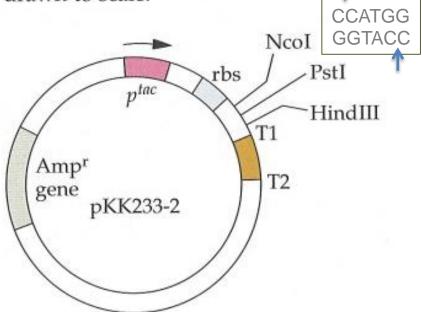

Regulated Expression in Prokaryotes



RNA Processing \rightarrow Complex Mechanisms



Alternative Splicing


FIGURE 2.13 Alternative splicing of a eukaryotic primary RNA transcript. The bracketing arrows mark the sites that are spliced together after the removal of the intervening RNA region. In this example, exon 2, flanked by introns a and b, is spliced out of the primary transcript, and exons 1 and 3 are spliced together to form a functional mRNA transcript.

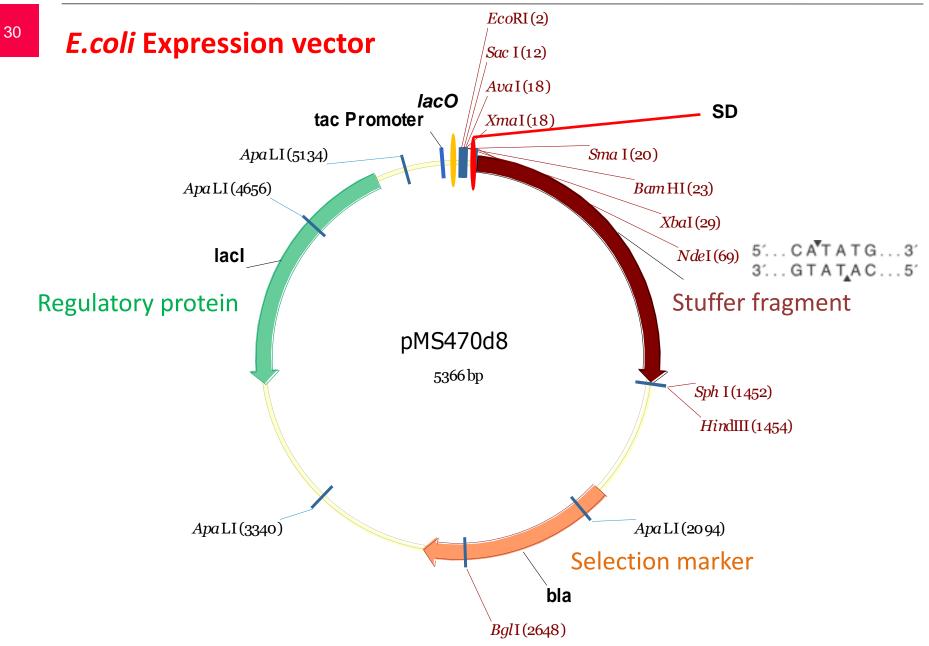
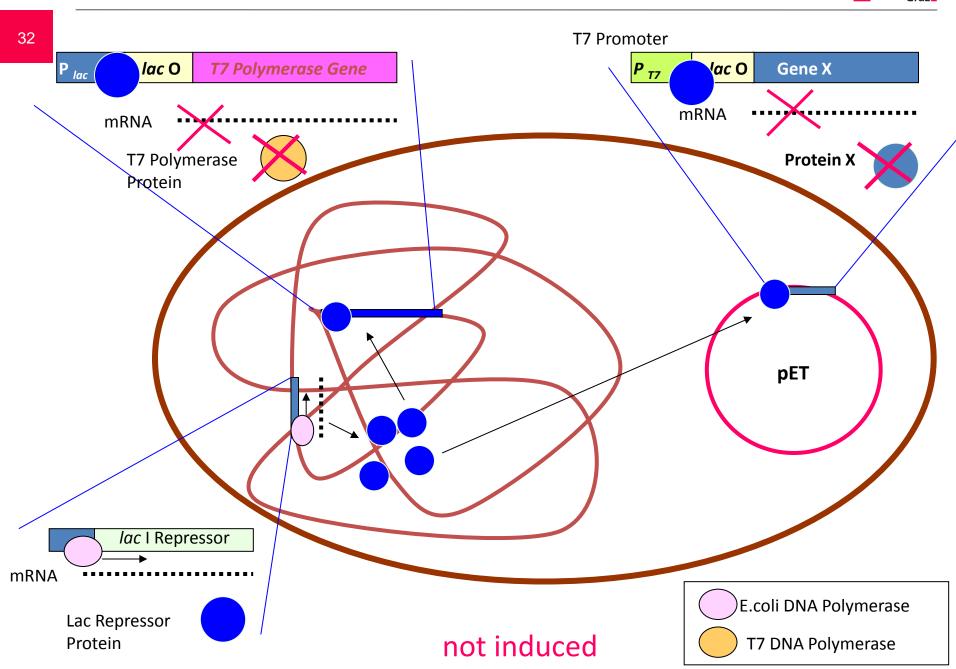
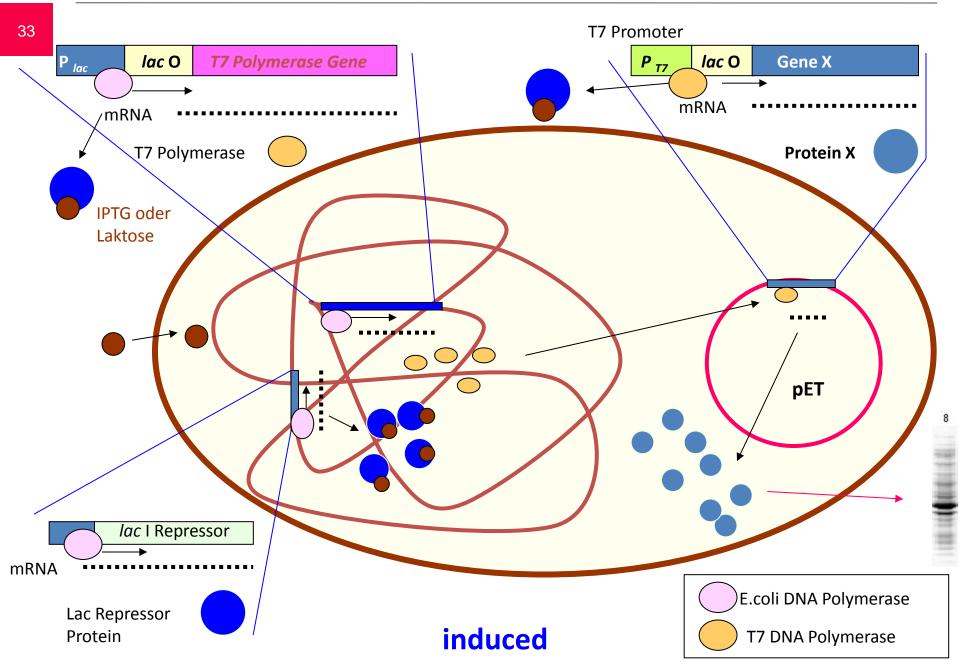


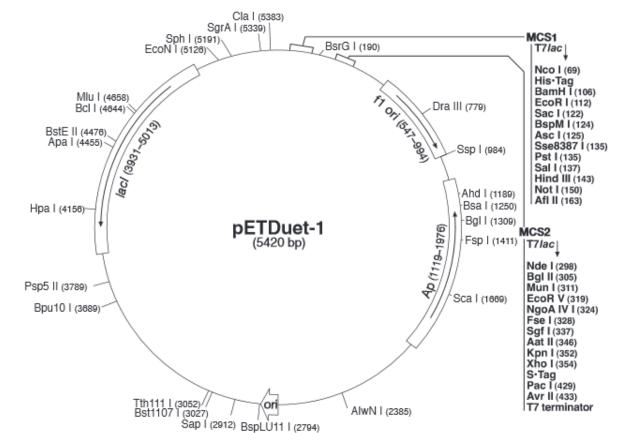
FIGURE 6.19 The expression vector pKK233-2. The plasmid pKK233-2 codes for the ampicillin resistance (Amp^r) gene as a selectable marker gene, the *tac* promoter (*p*^{*tac*}), the *lacZ* ribosome-binding site (rbs), three restriction endonuclease cloning sites (NcoI, PstI, and HindIII), and two transcription termination sequences (T1 and T2). The arrow indicates the direction of transcription. The plasmid is not drawn to scale.




³¹ 22.10.15

pET-Expression system

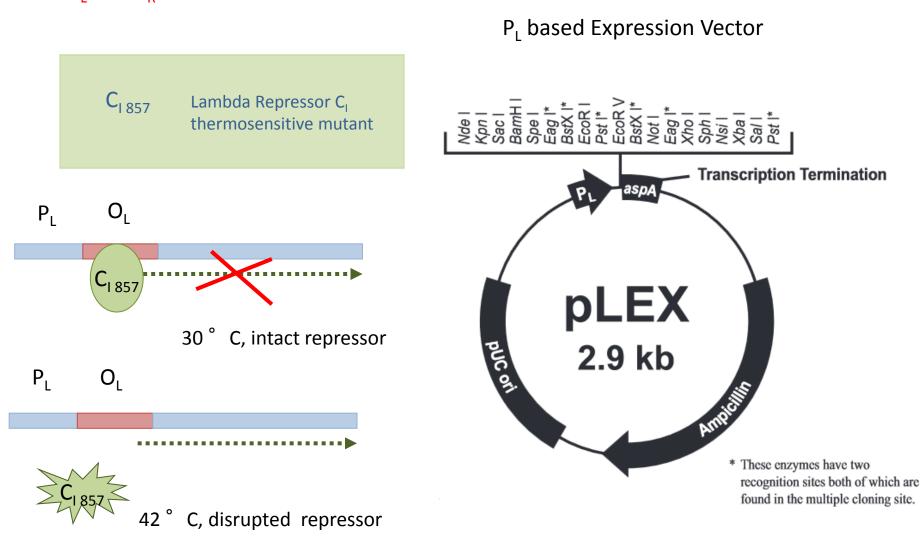
pET-Expression system



pETDuet-1 Vector

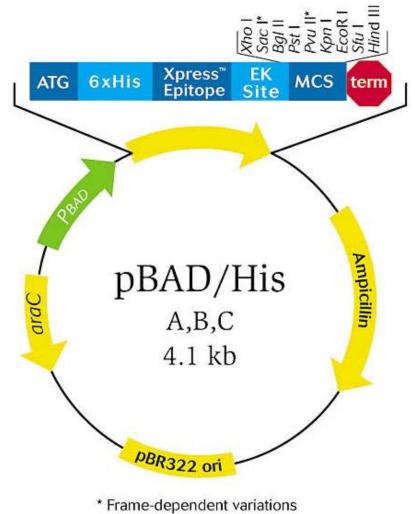
	Cat. No.
pETDuet-1 DNA	71146-3
pETDuet-1 sequence landmarks	
T7 promoter-1	5404-5420
T7 transcription start-1	1
His•Tag [®] coding sequence	83-100
Multiple cloning sites-1	
(Nco I-Aft II)	69 - 168
T7 promoter-2	214 - 230
T7 transcription start-2	231
Multiple cloning sites-2	
(Nde I–Avr II)	297 - 438
S•Tag [™] coding sequence	366 - 410
T7 terminator	462 - 509
<i>lacI</i> coding sequence	3931 - 5013
pBR322 origin	2737
bla (Ap) coding sequence	1119 - 1976
f1 origin	547 - 994

pETDuet[™]-1 is designed for the coexpression of two target genes. The vector contains two multiple cloning sites (MCS), each of which is preceded by a T7 promoter/*lac* operator and a ribosome binding site (rbs). The vector also carries the pBR322-derived ColE1 replicon, *lacI* gene and ampicillin resistance gene. This vector can be used in combination with pACYCDuet[™]-1 (Cat. No. 71147-3) in an appropriate host strain for the coexpression of up to 4 target genes. Genes inserted into MCS1 can be sequenced using the pET Upstream Primer (Cat. No. 69214-3) and DuetDOWN1 Primer (Cat. No. 71179-3). Genes inserted into MCS2 can be sequenced using the DuetUP2 Primer (Cat. No. 71180-3) and T7 Terminator Primer (Cat. No. 69337-3).



https://www.merckmillipore.com/AT/de/product/pETDuet%E2%84%A2-1-DNA---Novagen,EMD_BIO-71146#anchor_USP

http://tools.thermofisher.com/content/sfs/manuals/plex_man.pdf



Arabinose Operon based Expression system

The pBAD Expression System is based on the *araBAD* operon which controls the arabinose metabolic pathway in E.coli. It allows you to precisely modulate heterologous expression to levels that are optimal for recovering high yields of your protein of interest.

The pBAD/His vector offers the following key features:

- The PBAD promoter and the *ara*C gene product for regulated expression of the gene of interest
- N-terminal polyhistidine tag for rapid purification of fusion proteins using ProBond[™] resin
- Anti-Xpress[™] epitope for detection of fusion proteins with the Anti-Xpress[™] Antibody
- Enterokinase cleavage site to facilitate removal of the fusion partner
- Multiple cloning site in three reading frames to simplify subcloning in frame with the N-terminal polyhistidine tag Amnicillin resistance gene and CoIE1 origin for selection and
- Ampicillin resistance gene and ColE1 origin for selection and maintenance in E. coli

Heterologous expression in prokaryotes – E.coli

```
Transcription
         regulated promoters
                  lambda p<sub>1</sub>, p<sub>R</sub>
                  lac, trp, tac. trc, araBAD
                   Τ7
         termination
                  rrnB (T1,T2), trpt
                  Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
         elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```


m-RNA Stability

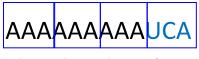
RNA has programmed half life no good information available on factors determining decay

Secondary structures \rightarrow Target for RNases

Sequence structure → determines secondary structure and accessibility to RNases

Heterologous expression in prokaryotes – *E.coli*

```
Transcription
         regulated promoters
                 lambda p_1, p_R
                 lac, trp, tac. trc, araBAD
                  Τ7
        termination
                 rrnB (T1,T2), trpt
                 Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
        elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```



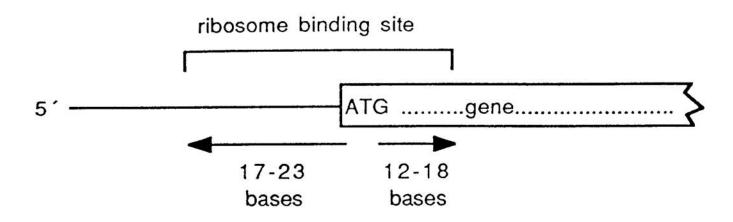
Translation Initiation

- SD sequence ...AGGAG....
- Secondary structures

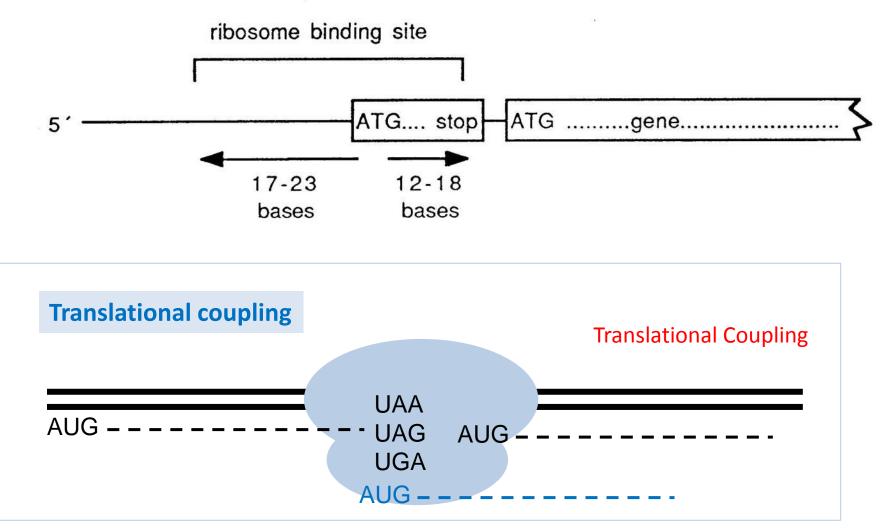
Translation elongation

- Codon usage
- Secondary structures
- Codon structure translational frameshifting

Lys Lys Lys Ser


Lys Lys Lys lle

Translation - Prokaryotes


Shine-Dalgarno (SD) SequencerRNA5 '-GAUACCAUCCUCCUUA-3 'mRNAGGAGG(5-7bp)AUG	Start	
Influences:	AUG	91%
Secondary structure!! SD and AUG in unstructured region	GUG UUG	8 1
Surrounding of SD and AUG!!!	000	Ţ

one-cistron mRNA

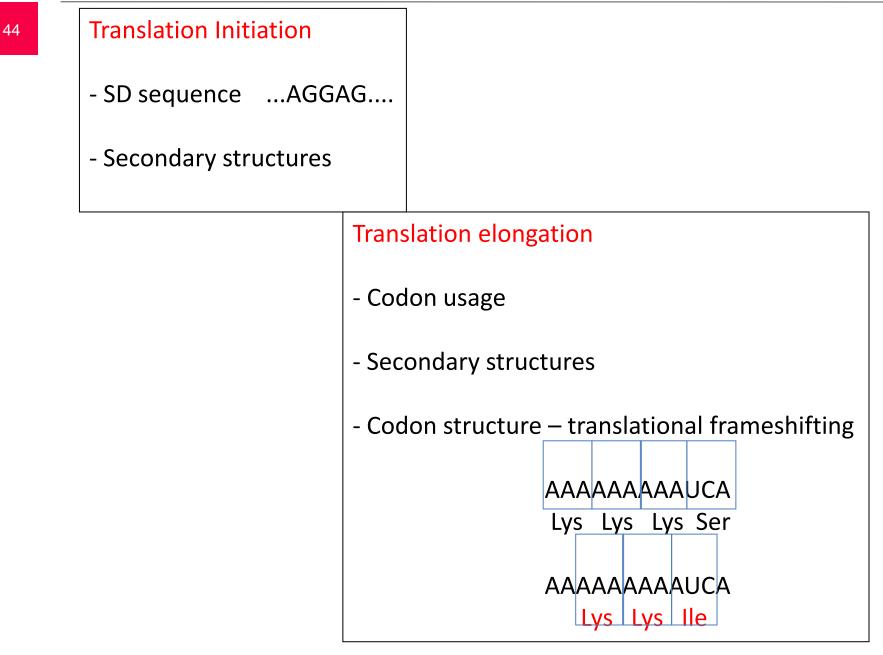
two-cistron mRNA

Translation - Eukaryotes

Start Codon

```
mRNA 5'-CAP.....AUG CAP structure essential for efficient translation initiation
```

Influences on Translation Efficiency:


Surrounding of AUG!!!

Kozak Consensus → not a ribosome binding site, present with highly expressed genes

```
.....CC<sup>A</sup>/<sub>G</sub>CCAUGG..... mammalian
```

```
\dots A/_{T}A^{A}/_{C}A^{A}/_{C}A^{A}UGTC^{T}/_{C} yeast
```


/IOL.911 Molecular Biotechnology I				GUU GUC	Valine Valine	0.29 0.20	0.10 0.17 0.25
	e genetic code and codon usa	No. of Concession, Name of Concession, Name	the second s	GCG GCA	Alanine	0.34	0.10
Codon	Amino acid	Frequency of	use in:	GCU	Alanine	0.22	0.22
		E. coli	Human	GCC	Alanine	0.19 0.25	0.28
GGG	Glycine	0.13		AAG	Lysine	0.24	0.40
GGA	Glycine	0.09	0.23 0.26	AAA	Lysine	0.76	0.60 0.40
GGU	Glycine	0.38	0.18	AAU	Asparagine	0.39	
GGC	Glycine	0.40	0.33	AAC	Asparagine	0.61	0.44 0.56
GAG	Glutamic acid	0.30	0.59	AUG	Methionine	1.00	
GAA	Glutamic acid	0.70	0.41	AUA	Isoleucine		1.00
GAU	Aspartic acid	0.59	0.44	AUU	Isoleucine	0.07 0.47	0.14
GAC	Aspartic acid	0.41	0.56	AUC	Isoleucine	0.47	0.35 0.51
GUG	Valine	0.34	0.48	ACG	Threonine	0.23	0.12
GUA	Valine	0.17	0.10	ACA	Threonine	0.12	0.12
GUU	Valine	0.29	0.17	ACU	Threonine	0.21	0.23
GUC	Valine	0.20	0.25	ACC	Threonine	0.43	0.38
GCG GCA	Alanine	0.34	0.10	UGG	Tryptophan	1.00	1.00
GCU	Alanine Alanine	0.22	0.22	UGU	Cysteine	0.43	0.42
GCC	Alanine	0.19 0.25	0.28 0.40	UGC	Cysteine	0.57	0.58
AAG	Lysine	0.24		UGA	Stop	0.30	0.61
AAA	Lysine	0.76	0.60 0.40	UAG	Stop	0.09	0.17
AAU	Asparagine	0.39		UAA	Stop	0.62	0.22
AAC	Asparagine	0.61	0.44 0.56	UAU	Tyrosine	0.53	0.42
AUG	Methionine	1.00	1.00	UAC	Tyrosine	0.47	0.58
AUA	Isoleucine	0.07	0.14	UUU	Phenylalanine	0.51	0.43
AUU	Isoleucine	0.47	0.35	UUC	Phenylalanine	0.49	0.57
AUC	Isoleucine	0.46	0.51	UCG	Serine	0.13	0.06
ACG	Threonine	0.23	0.12	UCA	Serine	0.12	0.15
ACA	Threonine	0.12	0.27	UCU UCC	Serine	0.19	0.17
ACU	Threonine	0.21	0.23	AGU	Serine	0.17	0.23
ACC	Threonine	0.43	0.38	AGC	Serine Serine	0.13 0.27	0.14
UGG	Tryptophan	1.00	1.00	CGG			0.25
UGU	Cysteine	0.43	0.42	CGA	Arginine Arginine	0.08 0.05	0.19 0.10
UGC	Cysteine	0.57	0.58	CGU	Arginine	0.42	0.09
UGA UAG	Stop	0.30	0.61	CGC	Arginine	0.37	0.19
UAA	Stop	0.09	0.17	AGG	 Arginine 	0.03	0.22
UAU	Stop	0.62	0.22	AGA	Arginine	0.04	0.21
UAC	Tyrosine Tyrosine	0.53	0.42	CAG	Glutamine	0.69	0.73
UUU	Phenylalanine	0.47 0.51	0.58	CAA	Glutamine	0.31	0.27
UUC	Phenylalanine	0.49	0.43	CAU	Histidine	0.52	0.41
UCG	Serine		0.57	CAC	Histidine	0.48	0.59
UCA	Serine	0.13 0.12	0.06 0.15	CUG	Leucine	0.55	0.43
UCU	Serine	0.12	0.15	CUA	Leucine	0.03	0.07
UCC	Serine	0.17	0.23	CUU	Leucine	0.10	0.12
AGU	Serine	0.13	0.14	CUC UUG	Leucine	0.10	0.20
AGC	Serine	0.27	0.25	UUA	Leucine Leucine	0.11	0.12
CGG	Arginine	0.08	0.19	CCG		0.11	0.06
CGA CGU	Arginine	0.05	0.10	CCA	Proline Proline	0.55	0.11
CGC	Arginine	0.42	0.09	CCU	Proline	0.20	0.27

MOL.911 Molecular Biotechnology I

Table 3.2 The genetic code and codon usage in E. coli and humans

2	1	6
		1

E. coli 0.13	Humans
0.13	
	0.23
0.09	0.26
0.38	0.18
0.40	0.33
	0.59
0.70	0.41
0.59	0.44
0.41	0.56
0.34	0.48
0.17	0.10
0.29	0.17
0.20	0.25
0.34	0.10
0.22	0.22
0.19	0.28
0.25	0.40
0.24	0.60
0.76	0.40
0.39	0.44
0.61	0.56
1.00	1.00
	0.14
	0.35
0.46	0.51
0.23	0.12
0.12	0.27
0.21	0.23
0.43	0.38
1.00	1.00
	0.42
	0.58
	$egin{array}{cccccccccccccccccccccccccccccccccccc$

UGA	Stop	0.30	0.61
UAG	Stop	0.09	0.17
UAA	Stop	0.62	0.22
UAU	Tyrosine	0.53	0.42
UAC	Tyrosine	0.47	0.58
UUU	Phenylalanine	0.51	0.43
UUC	Phenylalanine	0.49	0.57
UCG	Serine	0.13	0.06
UCA	Serine	0.12	0.15
UCU	Serine	0.19	0.17
UCC	Serine	0.17	0.23
AGU	Serine	0.13	0.14
AGC	Serine	0.27	0.25
CGG	Arginine	0.08	0.19
CGA	Arginine	0.05	0.10
CGU	Arginine	0.42	0.09
CGC	Arginine	0.37	0.19
AGG	 Arginine 	0.03	0.22
AGA	Arginine	0.04	0.22 0.21
CAG	Glutamine	0.69	0.73
CAA	Glutamine	0.31	0.27
CAU	Histidine	0.52	0.41
CAC	Histidine	0.48	0.59
CUG	Leucine	0.55	0.43
CUA	Leucine	0.03	0.07
CUU	Leucine	0.10	0.12
CUC	Leucine	0.10	0.20
UUG	Leucine	0.11	0.12
UUA	Leucine	0.11	0.06
CCG	Proline	0.55	0.11
CCA	Proline	0.20	0.27
CCU	Proline	0.16	0.29
CCC	Proline	0.10	0.33

Heterologous expression in prokaryotes – *E.coli*

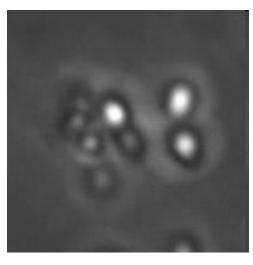
```
Transcription
         regulated promoters
                 lambda p_1, p_R
                 lac, trp, tac. trc, araBAD
                  Τ7
        termination
                 rrnB (T1,T2), trpt
                 Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
        elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```


Protein Folding

Translation Conditions

Elongation velocity Codon Structure – Pausing Domain folding

Disulfide Bond Formation Redox Conditions *E.coli* Cytosol \rightarrow bad conditions - reductive *E.coli* Periplasm \rightarrow optimal conditions - oxidative


Chaperones

Inclusion Body Formation

Expression velocity \rightarrow Translation

Protein Folding

The Department of Surface Biotechnology with the Center for Surface Biotechnology, Box 577, BMC, 751 23 Uppsala

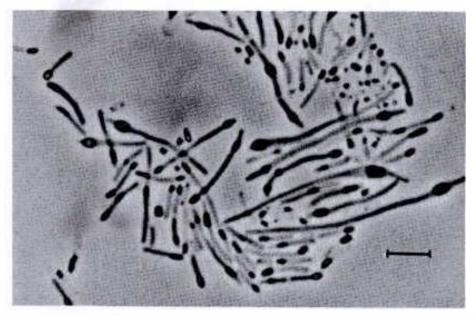
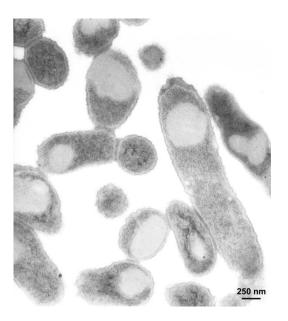



Figure 3 Phase-contrast microscopy of HB101/pBSF2-SD7 cells overproducing hIL-6 (bar equals 2 µm). (From Ref. 61)

www.boku.ac.at/IAM/dn/EM424_23.jpg

Heterologous expression in prokaryotes – *E.coli*

```
Transcription
         regulated promoters
                 lambda p_1, p_R
                 lac, trp, tac. trc, araBAD
                  Τ7
        termination
                 rrnB (T1,T2), trpt
                 Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
        elongation – codon usage
Protein Folding
Proteolysis
        Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```


⁵² 5.11.15

Post-translational modifications

Side Chain Modifications Glycosylation, Phosphorylation, Sulfatation, etc. Proteolytic Processing ss Cleavage Pro-protein processing N/C-terminal Processing

Posttranslational Processing in prokaryotes – E.coli

N-terminal processing – the problem of Met f-Met deformylase methionine aminopeptidase (MAP) of *E.coli* peptidase M (*S. typhimurium*) aminopeptidase M: Exopeptidase → X-Pro aminopeptidase P: NH₂-X-/Pro dipeptidylaminopeptidase I (DAP-I, Cathepsin C) → not at NH₂ Pro/Arg/Lys protein fusion strategies sequence specific proteases

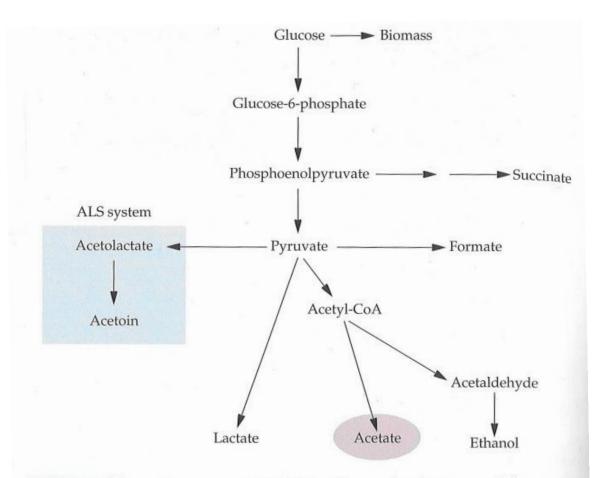
tags

Table 6.5	α -Amylase gene copy number and activity in
B. subtilis	

Copies/genome	Activity (U/mL of mid-log cells)
2	500
5	2,300
7	3,100
8	3,400
9	4,400
Multicopy plasmid	700

Adapted from Kallio et al., 1987, Appl. Microbiol. Biotechnol. 27:64-71.

Table 6.6 Effect of plasmid copy number on host cell growth rate


E. coli HB101 with plasmid:	Plasmid copy number	Relative specific growth rate	
None	0	1.00	
A	12	0.92	
В	24	0.91	
C	60	0.87	
D	122	0.82	
Е	408	0.77	

Adapted from Seo and Bailey, 1985, Biotechnol. Bioeng. 27:1668-1674.

The different plasmids, designated A, B, C, D and E, encode only β lactamase and are all the same size. The growth rates were normalized to the growth rate value for *E. coli* HB101 without a plasmid.

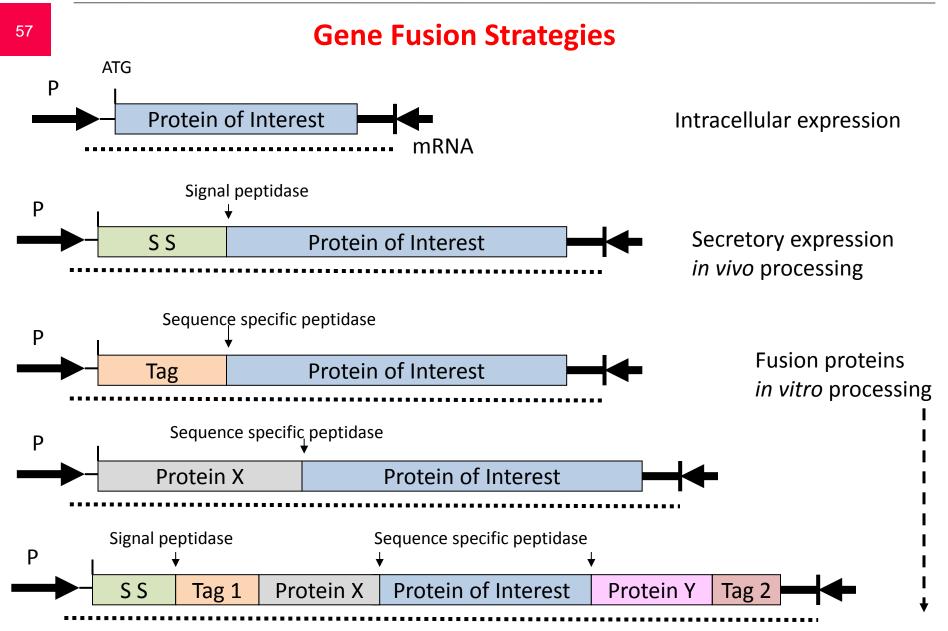

Metabolic load

FIGURE 17.7 Schematic representation of the pathways for glucose metabolism in an *E. coli* strain that has been transformed with a plasmid carrying the genes for the protein subunits of acetolactate synthase (ALS). Note that the conversion of glucose to biomass is a multistep process. CoA, coenzyme A.

56

MOL.911 Molecular Biotechnology I

Table 6.3 Some fusion systems used to facilitate the purification of foreign proteins produced in *E. coli*

Fusion partner	Size	Ligand	Elution condition
ZZ	14 kDa	IgG	Low pH
His tail	6-10 aa	Ni ²⁺	Imidazole
Strep-tag	10 aa	Streptavidin	Iminobiotin
PinPoint	13 kDa	Streptavidin	Biotin
MBP	40 kDa	Amylose	Maltose
β -Lactamase	27 kDa	Phenyl-boronate	Borate
GST	25 kDa	Glutathione	Reducing agent
Flag	8 aa	Specific MAb	Low calcium

Adapted from Nygren et al., 1994, Trends Biotechnol. 12:184-188.

Abbreviations: aa, amino acids; kDa, kilodaltons; ZZ, a fragment of *Staphylococcus aureus* protein A; His, histidine; Strep-tag, a peptide with affinity for streptavidin; PinPoint, a protein fragment which is

Table 2 Sequence and size of affinity tags

Tag	Residues	Sequence	Size (kDa)
Poly-Arg	5-6	RRRRR	0.80
	(usually 5)		
Poly-His	2-10	ннннн	0.84
-	(usually 6)		
FLAG	8	DYKDDDDK	1.01
Strep-tag II	8	WSHPQFEK	1.06
e-mŷc	11	EQKLIŠEEDL	1.20
S-	15	KETAAAKFERQHMDS	1.75
HAT-	19	KDHLIHNVHKEFHAHAHNK	2.31
3x FLAG	22	DYKDHDGDYKDHDIDYKDDDDK	2.73
Calmodulin-binding peptide	26	KRRWKKNFIAVSAANRFKKISSSGAL	2.96
Cellulose-binding domains	27 - 189	Domains	3.00-
-			20.00
SBP	38	MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP	4.03
Chitin-binding domain	51	TNPG VS AWQVNTA YTA GQLVT YNGKT YKCLQPHT SLAGWEPSNVPALWQLQ	5.59
Glutathione S-transferase	211	Protein	26.00
Maltose binding protein	396	Protein	40.00

Affinity tag

Poly-Arg

Poly-His

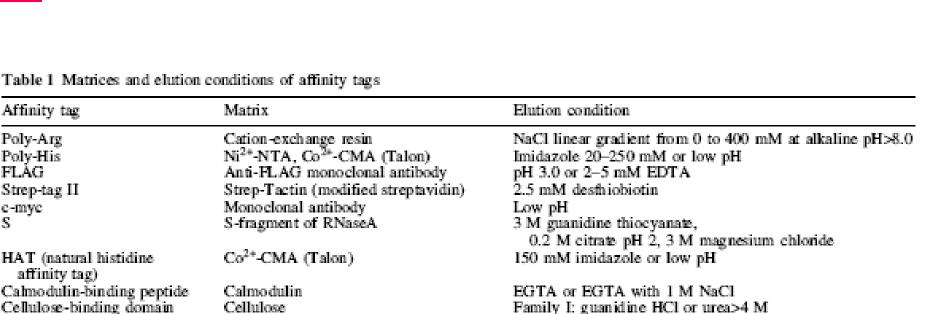
Strep-tag II

HAT (natural histidine affinity tag)

Cellulose-binding domain

Chitin-binding domain

Glutathione S-transferase


Maltose-binding protein

FLÅG.

c-myc

SBP.

 \mathbf{S}

2 mM Biotin

10 mM maltose

Family II/II: ethylene glycol

 β -mercaptoethanol or cysteine

5-10 mM reduced glutathione

Fused with intein: 30-50 mM diffiothreitol,

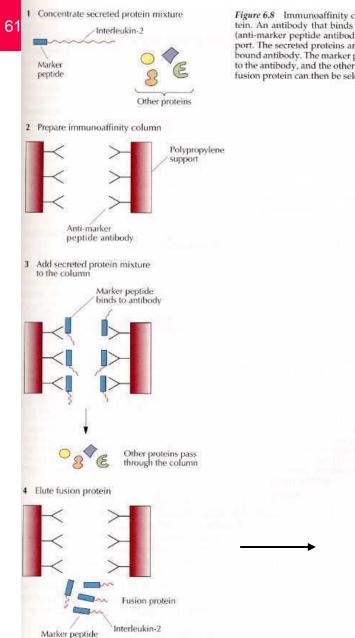
Table 1 Matrices and elution conditions of affinity tags

Streptavidin

Glutathione

Cross-linked amylose

Chitin


Enterokinase		(Hosfield and Lu 1999) based sequenceGSDYKDDDDK-3	nterokinase through densitometry on the amino acid residue X ₁ . The X ₁ -ADQLTEEQIA of a GST-cal- ted using 5 mg protein digested with at 37 °C
D-D-D-K-X1		Amino acid in position X ₁	Cleavage of enterokinase (%)
TEV protease		Alanine Methionine Lysine Leucine Asparagine	88 86 85 85 85
E-X-X-Y-X-Q-S		Phênylalanine Isoleucine Aspartic acid Glutamic acid	85 84 84 80
α-thrombin X4-X3-P-R[K]-X1		Glutamine Valine Arginine Threonine	79 79 78 78
X2		Tyrosine Histidine Serine	78 76 76
L - V -P-R G - S	Site of cleavage of factor X _a	Cysteine Glycine Tryptophan Proline	74 74 67 61
X _a linker sequence Thr-Ala-Glu-Gly-Gly-Ser-Ile-Glu-G	ce		

... Thr-Ala-Glu-Gly-Gly-Ser-lie-Glu-Gly-Arg-val-His-Leu...

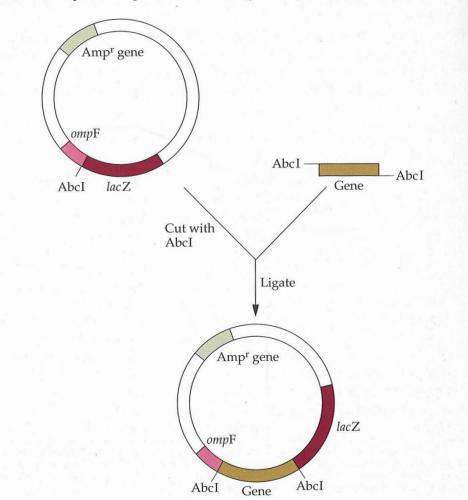
Figure 6.6 Proteolytic cleavage of a fusion protein by blood coagulation factor X_a . The factor X_a recognition sequence (X_a linker sequence) lies between the amino acid sequences of two different proteins. A functional cloned gene protein (with Val at its N terminus) is released after cleavage.

MOL.911 Molecular Biotechnology I

Tag purification strategies

Figure 6.8 Immunoaffinity chromatographic purification of a fusion protein. An antibody that binds to the marker peptide of the fusion protein (anti-marker peptide antibody) is attached to a solid polypropylene support. The secreted proteins are passed through the column containing the bound antibody. The marker peptide portion of the fusion protein is bound to the antibody, and the other proteins pass through. The immunopurified fusion protein can then be selectively eluted from the column.

Removal of Tag


Proteolytic cleavage of Tag

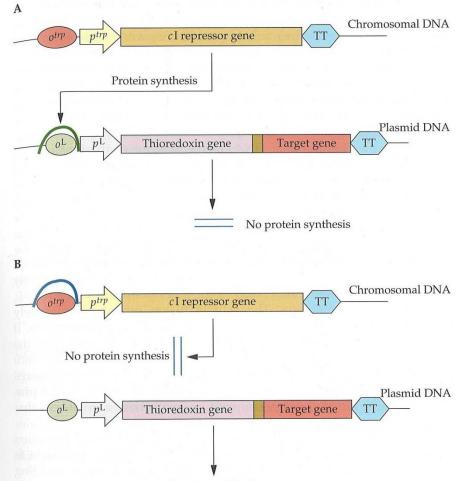
MOL.911 Molecular Biotechnology I

23.10.14

FIGURE 6.11 A fusion protein cloning vector. The plasmid contains an ampicillin resistance (Amp^r) gene as the selectable marker, a DNA sequence encoding the N-terminal segment of the *E. coli* outer membrane protein (*ompF*), a restriction endonuclease site (AbcI) for cloning, and a truncated β -galactosidase gene (*lacZ*). The cloned gene (Gene) is inserted into the AbcI site. After transcription and translation, a tribrid protein is produced consisting of OmpF–target protein–LacZ.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

Examples for fusion strategies


For *E.coli*:

Maltose binding protein Thioredoxin reductase

Generally: well soluble proteins Well folded proteins

Fusions can help for:

Translation initiation Folding Protein detection: Antibodies against Fusion partner (also with small tags)

Protein synthesis

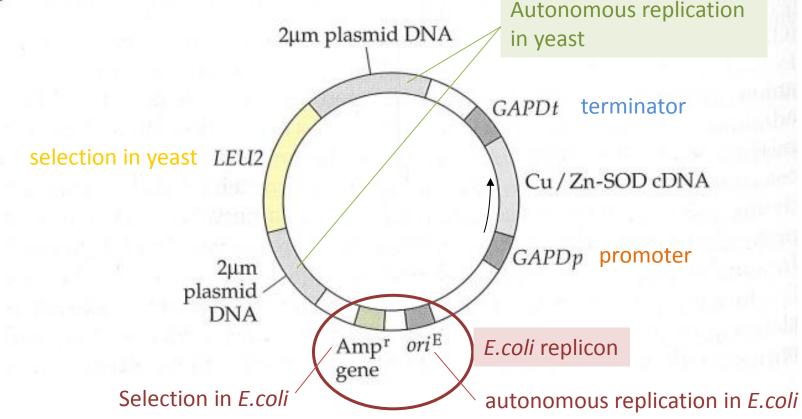
FIGURE 6.21 Regulation of the synthesis of a thioredoxin–target protein fusion in the absence (A) or presence (B) of tryptophan in the growth medium. The arrows labeled p^{trp} and p^{L} indicate the direction of transcription. o^{trp} , the operator region where the *trp* repressor protein binds; o^{L} , the operator region where the *cI* repressor binds; p^{trp} , the *trp* promoter; p^{L} , the leftward promoter from bacteriophage λ ; TT, transcription termination region. The box between the thioredoxin and target genes indicates the DNA region that codes for the peptide that acts as the enterokinase cleavage site; the horseshoes indicate the binding of a repressor protein to its operator region.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

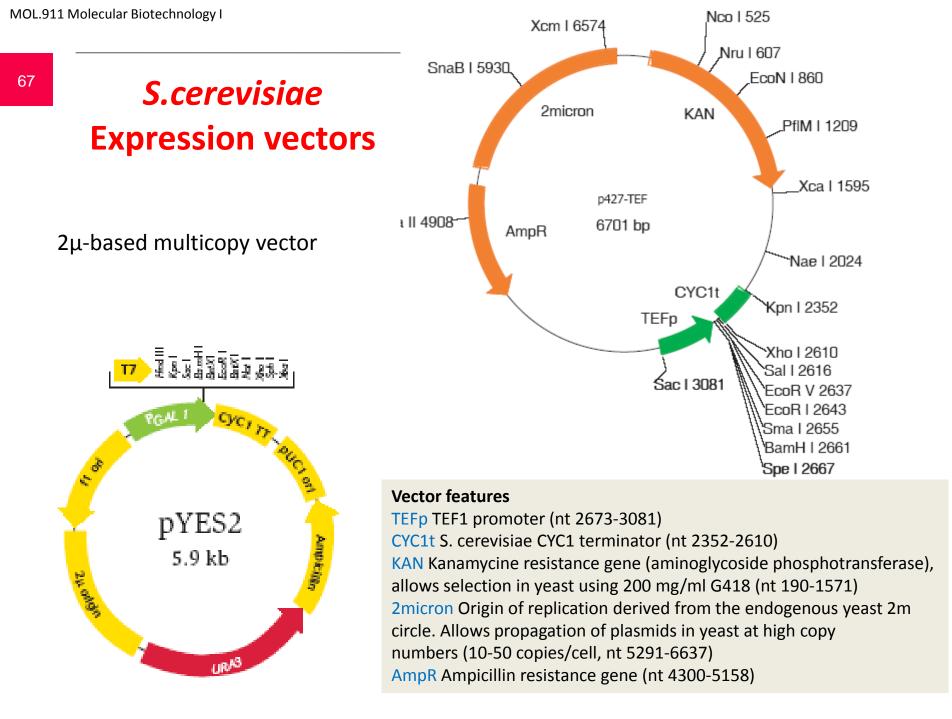
Eukaryotic Expression Systems

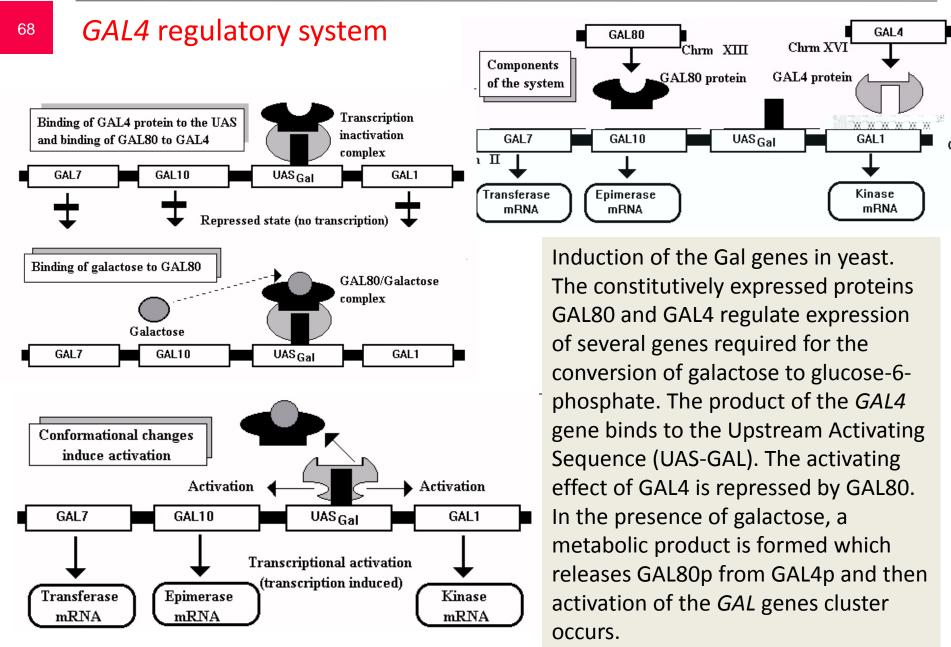
Fungi – Yeasts

Insect Cells


Plant Cells

Mammalian Cells Mouse Hamster Avian Human **Transgenic Plants**


Transgenic Animals

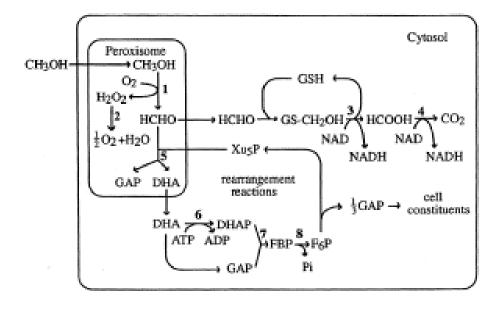

FIGURE 7.7 *S. cerevisiae* expression vector. The cDNA for human Cu/Zn-SOD was cloned between the promoter (*GAPDp*) and termination–polyadenylation sequence (*GAPDt*) of the *S. cerevisiae* glyceraldehyde phosphate dehydrogenase gene. The *LEU2* gene that was cloned between segments of the yeast 2µm plasmid DNA encodes a functional enzyme of the leucine biosynthesis pathway. The yeast origin of replication is included in the 2µm plasmid DNA. The ampicillin resistance (Amp^r) gene and the *E. coli* origin of replication (*ori*^E) are derived from plasmid pBR322.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

Protein Expression in *Pichia pastoris*

• Methylotrophic yeast

Two alcohol oxidase genes: AOX1, AOX2


AOX1: 5 % of total mRNA, 30 % of total protein

- Well established commercial expression system
- More than 300 proteins successfully expressed

(bacterial, virusal, fungal, plant, protozoan, invertebrate, vertebrate \rightarrow 120 human proteins)

- High cell density fermentation (>100 g/L) on simple media
- No switch to anaerobic fermentation (ethanol problem)
- Stable integration into host chromosome
- Intracellular and secretory production capacities
- Advantages of a eukaryotic host cell but simple system
 Glycosylation (N-linked, high-mannose type)
 Post-translational processing

P.pastoris Expression system

AOX1: strong expression AOX2: weak expression

Figure 1 - High Biomass of Pichia pastoris

S. cerevisiae P. pastoris

Pichia expression tools

- <u>Promoters</u> AOX1, GAP
- <u>Selection marker</u>
 HIS4, ARG4, Zeocin^R, Blasticidin^R, Kanamycin^R (G418)
- <u>Signal sequences</u> *PHO1,* alpha-Factor
- Host strains

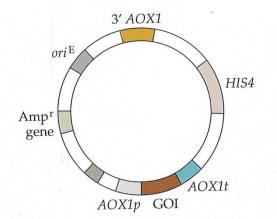
X-33 (wt), GS115 (*his4*), KM 71 (*aox1::arg4 his4*), KM7IH (*aox1::arg4*),SMD1168 (pep4 his4), SMD1168H (*pep4*) CBS 7435 (WZ or Δ*aox1* or Δ *his4* knockouts)

⁷² 19.11.15

Integration in *Pichia pastoris*

Gene replacement at AOX1 phenotype: Mut^s

Single cross-over integration of circular molecules AOX1 (5' and 3' regions) HIS4 GAP


Tandem repeat multicopy integration

Ectopic integration events

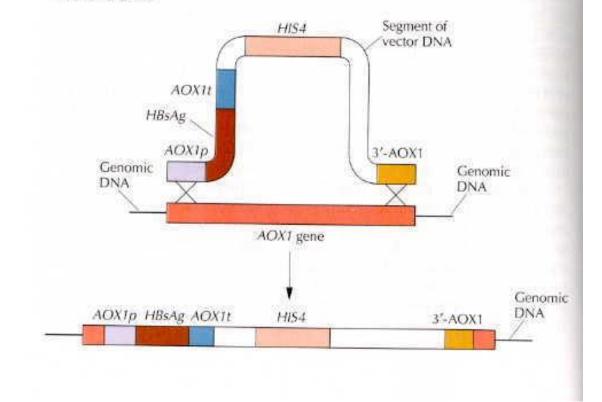
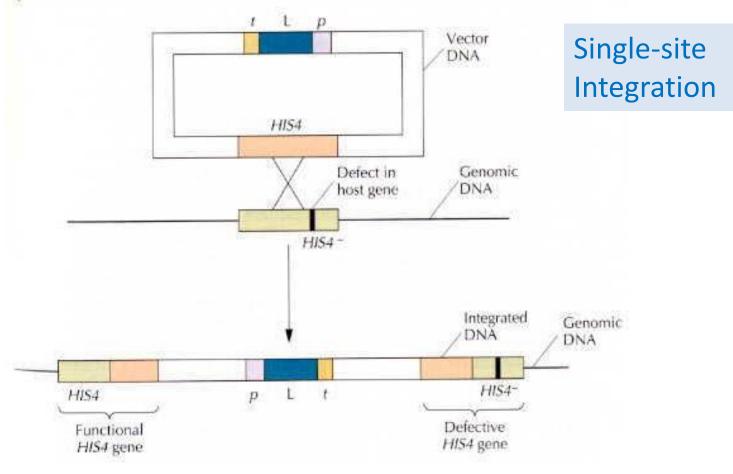

Integration vector for *Pichia pastoris*

FIGURE 7.10 P. pastoris integrating expression vector. The gene of interest (GOI) is cloned between the promoter (AOX1p) and termination-polyadenylation sequence (AOX1t) of the P. pastoris alcohol oxidase 1 gene. The HIS4 gene encodes a functional histidinol dehydrogenase of the histidine biosynthesis pathway. The ampicillin resistance (Amp^r) gene and an origin of replication (ori^E) function in E. coli. The segment marked 3' AOX1 is a piece of DŇA from the 3' end of the alcohol oxidase 1 gene of P. pastoris. A double recombination event between the AOX1p and 3' AOX1 regions of the vector and the homologous segments of chromosome DNA results in the insertion of the DNA carrying the gene of interest and the HIS4 gene.

Gene Replacement


Figure 7.6 Integration of part of an expression vector into the alcohol oxidase 1 gene of *P. pastoris*. The double crossover event occurs within the *AOX1p* and 3'-AOX1 DNA segments (shown at the top). This event results in the integration of the input DNA into the genomic DNA and the loss of most of the alcohol oxidase 1 gene (*AOX1*) from the host chromosome (shown at the bottom). The *HIS4* gene product enables cells with integrated DNA to grow on medium lacking histidine. In the presence of methanol, the *AOX1p* region drives the transcription of the *HBsAg* gene. The *AOX1t* segment provides transcription termination and polyadenylation signals for the *HBsAg* gene.

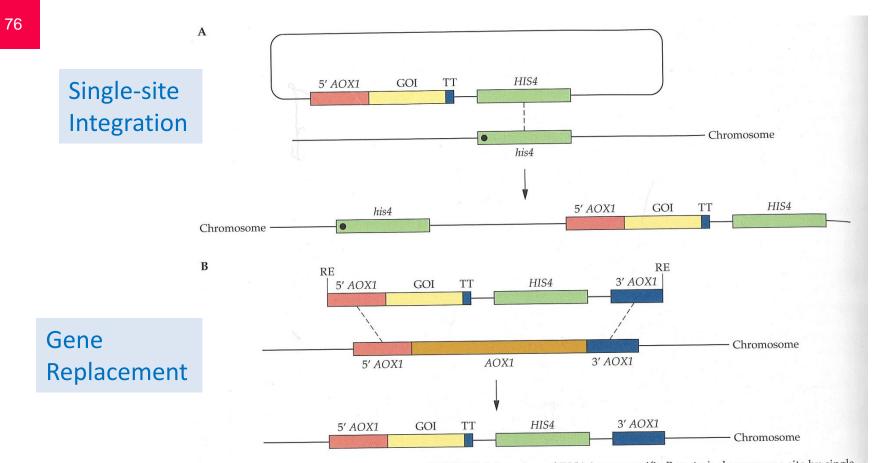

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

Figure 7.7 Integration of an expression vector into the defective chromosomal HIS4 gene of *P. pastoris*. The input DNA is a plasmid that is first introduced by transformation into a histidine-requiring *P. pastoris* strain. A single crossover within the HIS4 gene of the plasmid and the HIS4 gene of the host cell results in the integration of the entire plasmid, which then is flanked by the functional HIS4 gene and the defective HIS4⁻ gene. The letters *p*, L, and *t* denote the AOX1 promoter sequence, bovine lysozyme C2 cDNA, and AOX1 termination–polyadenylation signal sequence, respectively. The black bar in the HIS4⁻ gene represents the defective sequence.

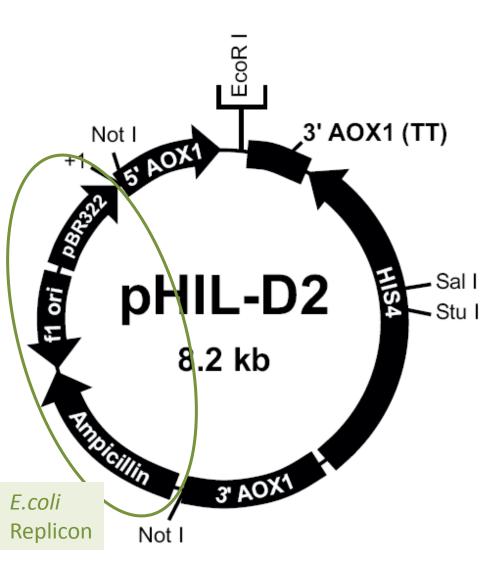
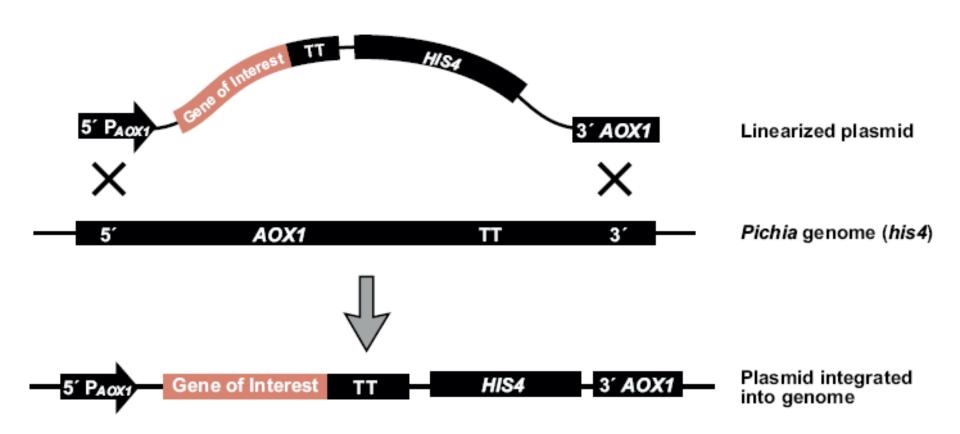
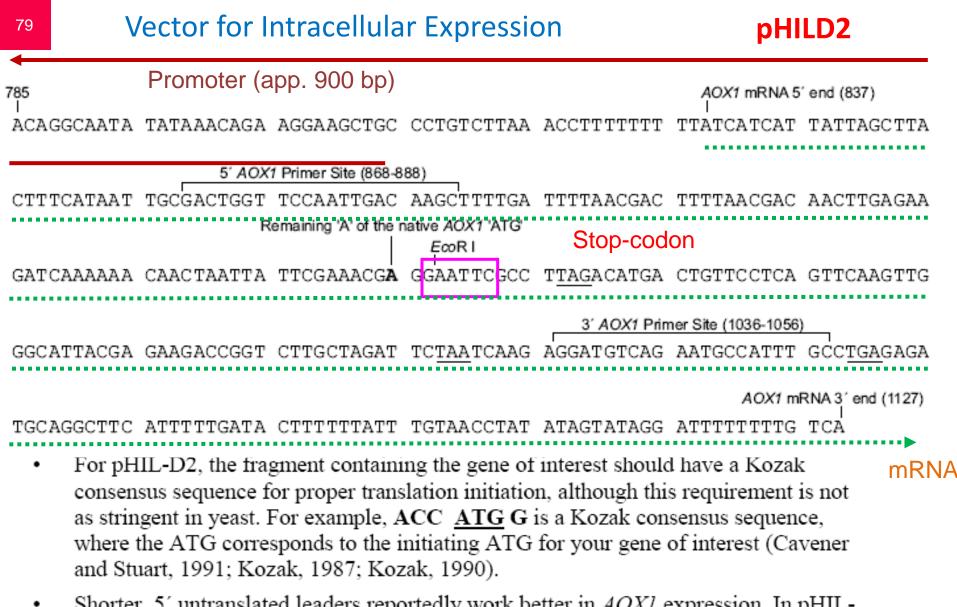


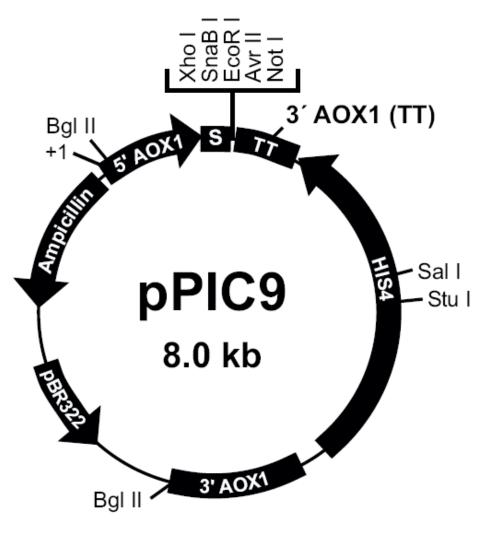
FIGURE 7.11 Integration of DNA into a specific *P. pastoris* chromosome site by single **(A)** or double **(B)** recombination. **(A)** A single recombination (dashed line) between the *HIS4* gene of an intact circular plasmid and a chromosome *his4* mutant gene results in the integration of the entire vector, including the gene of interest (GOI) with the *AOX1* promoter in the 5' *AOX1* DNA segment and the transcription-polyadenylation sequence from the *AOX1* gene (TT), into the chromosome. The dot in the *his4* gene represents the mutation. **(B)** A double recombination (dashed lines) between the cloned 5' *AOX1* and 3' *AOX1* DNA segments of a restriction endonuclease (RE) linearized DNA fragment from the vector and the corresponding chromosome regions results in the integration of the gene of interest (GOI) with the *AOX1* promoter in the 5' *AOX1* and 3' *AOX1* DNA segments of a restriction endonuclease (RE) linearized DNA fragment from the vector and the corresponding chromosome regions results in the integration of the gene of interest (GOI) with the *AOX1* promoter in the 5' *AOX1* segment, the termination–polyadenylation sequence from the *AOX1* gene (TT), and a functional *HIS4* gene. The chromosome *AOX1* coding region is lost as a result of the recombination event.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press


Vector for Intracellular Expression

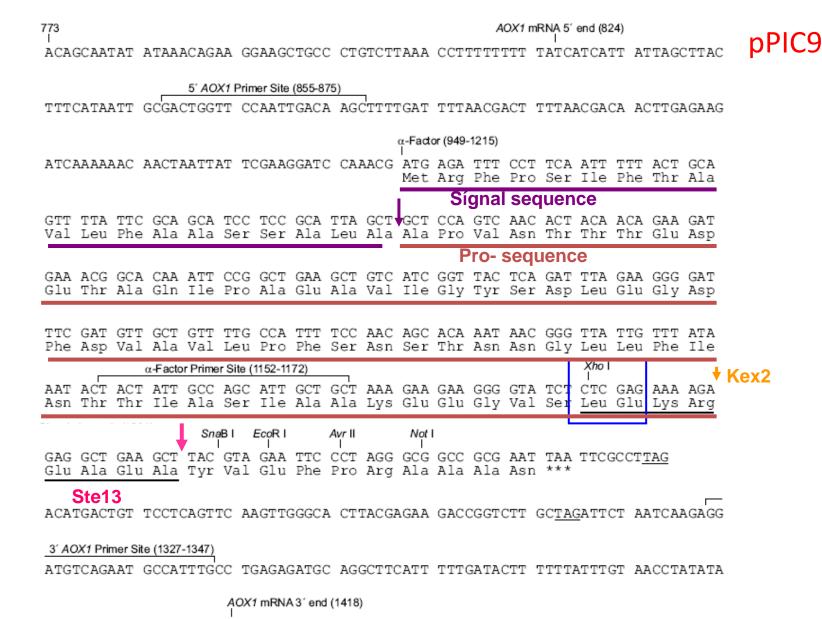

Comments for pHIL-D2: 8209 nucleotides

5' AOX1 promoter fragment: bases 14-941 5' AOX1 primer site: bases 868-888 EcoR I Site: bases 956-961 3' AOX1 primer site: bases 1036-1056 3' AOX1 primer site: bases 1036-1056 3' AOX1 transcription termination (TT) fragment: bases 963-1295 HIS4 ORF: bases 4223-1689 3' AOX1 fragment: bases 4578-5334 Ampicillin resistance gene: bases 5686-6546 f1 origin of replication: bases 7043-6588 pBR322 origin: bases 7138-7757



 Shorter, 5' untranslated leaders reportedly work better in AOXI expression. In pHIL-D2, make the untranslated region as short as possible when cloning your gene.

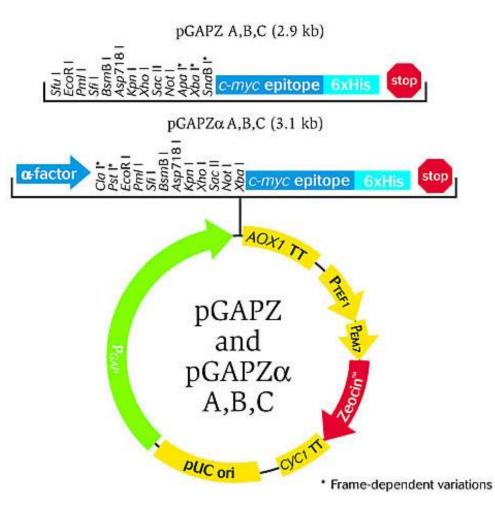
Vector for Secretory Expression



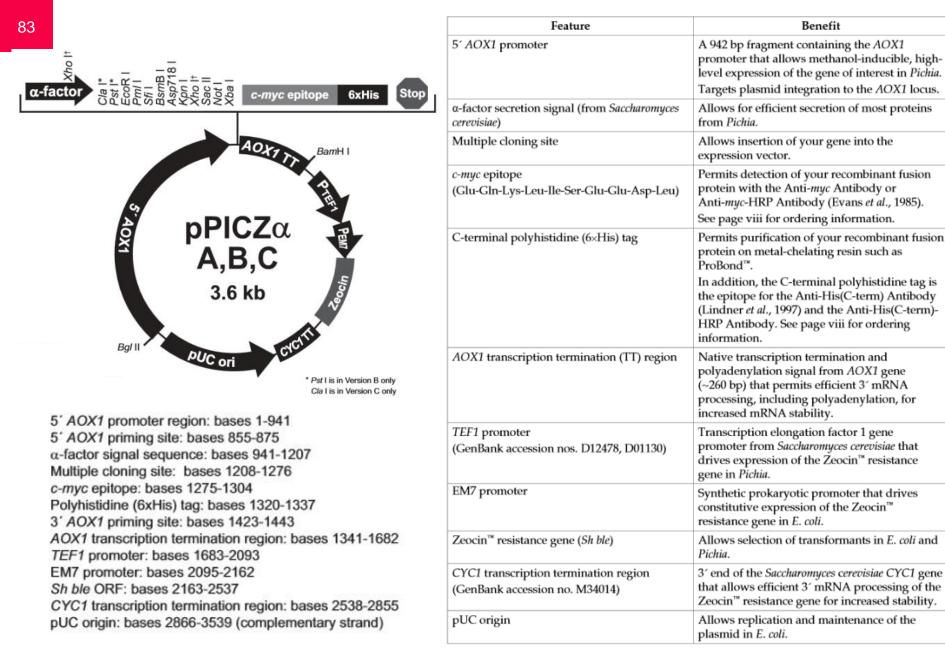
Comments for pPIC9: 8023 nucleotides

5' AOX1 promoter fragment: bases 1-948 5' AOX1 primer site: bases 855-875 α-Factor secretion signal(s): bases 949-1215 α-Factor primer site: bases 1152-1172 Multiple Cloning Site: bases 1192-1241 3' AOX1 primer site: bases 1327-1347 3' AOX1 primer site: bases 1327-1347 3' AOX1 transcription termination (TT): bases 1253-1586 HIS4 ORF: bases 4514-1980 3' AOX1 fragment: bases 4870-5626 pBR322 origin: bases 6708-6034 Ampicillin resistance gene: bases 7713-6853

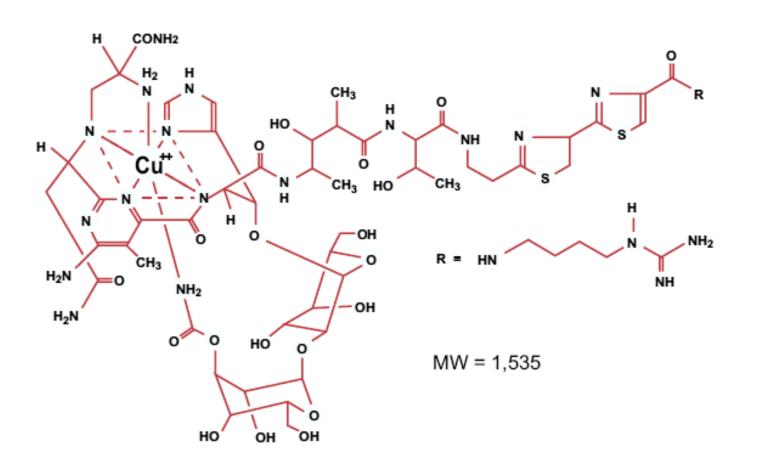
Vector for Secretory Expression

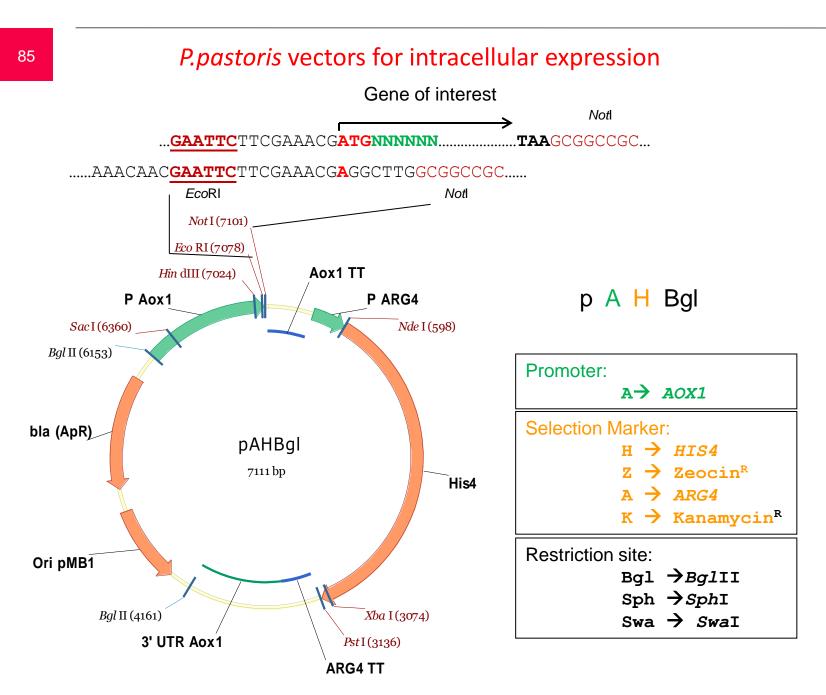


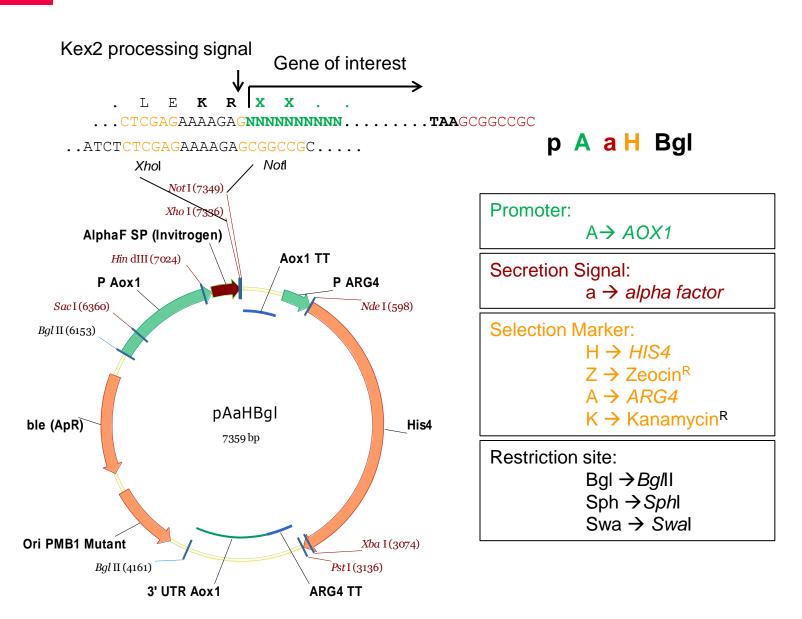
GTATAGGATT TTTTTTGTCA

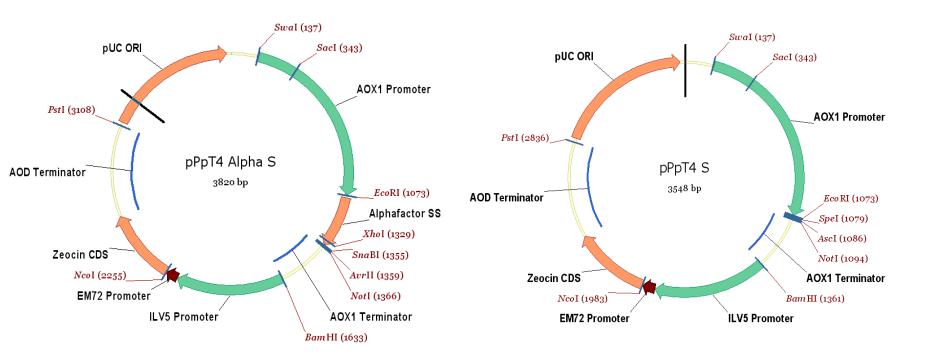


Resistance selection in *Pichia pastoris*, multiple integration and secretion


- P_{GAP}
- *AOX1* TT
- Zeo^R
- C-myc Epitope
- 6xHis
- alpha-factor
- ColE1 ori
- Multicopy Integration "in vivo"



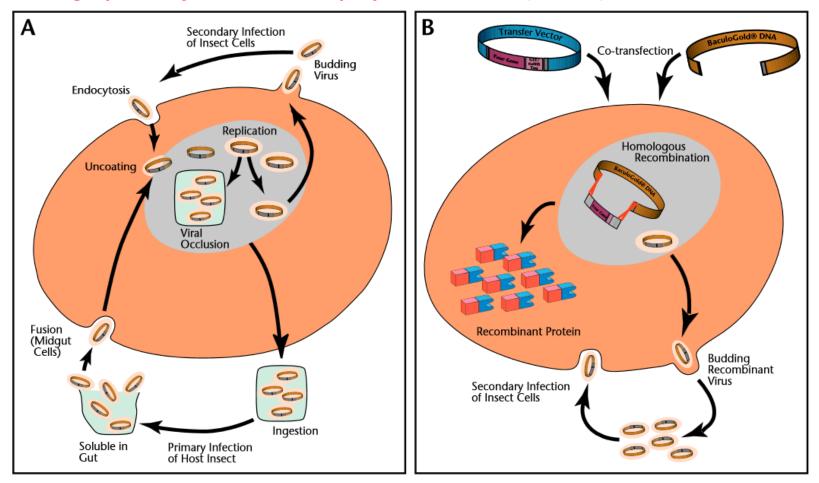

Zeocin



P.pastoris vectors for secretory expression

intracellular

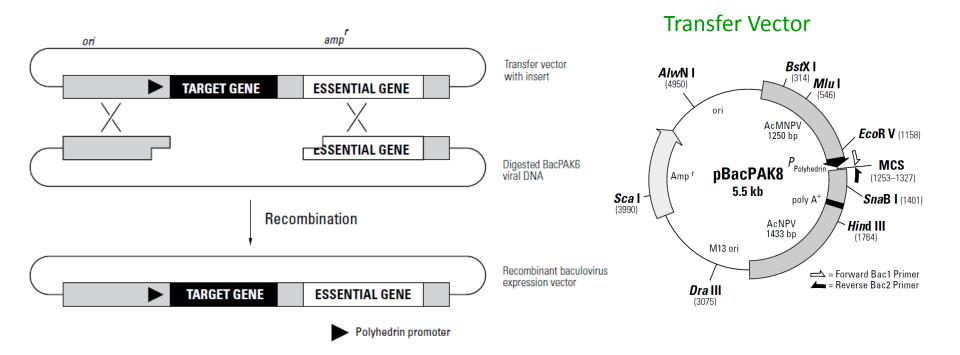
secretory


87

MOL.911 Molecular Biotechnology I Protein expressed		Expression Level (mg/L)	Reference	TU Graz	
	-	Bacterial proteins			
88		Tetanus toxin fragment C	12,000	Clare, J.J. et al. (1991) Bio/Technology 9: 455–460	
		α-amylase	2,500	Paifer, E. et al. (1994) Yeast 10: 1415–1419	
		T2A peroxidase	2,470	Thomas, L. et al. (1998) Can. J. Microbiol. 44: 364-372	
		C. botulinum neurotoxin fragme	nt 78	Smith, L.A. (1998) Toxicon 36: 1539–1548	
		Yeast proteins			
		Catalase L	2,300	Calera, J.A. et al. (1997) Infect. Immun. 65: 4718–4724	
		Glucoamylase	400	Fierobe, HP. et al. (1997) Protein Expr. Purif. 9: 159–170	
		Lipase	60	Minning, S. et al. (1998) J. Biotechnol. 66: 147–156	
	Ц	Plant proteins			
	Ш	Hydroxynitrile lyase	22,000	Hasslacher, M. et al. (1997) Protein Expr. Purif. 11: 61–71	
		Wheat lipid transfer protein	720	Klein, C. et al. (1998) Protein Expr. Purif. 13: 73–82	
		Aeroallergen	60	Huecas, S. et al. (1999) Eur. J. Biochem. 261: 539–546.	
		Invertebrate proteins			
		Hirudin	1,500	Rosenfeld, S.A. et al. (1996) Protein Expr. Purif. 8: 476–482.	
		Spider dragline silk protein	663	Fahnestock, S.R. et al. (1997) Appl. Micro. Biotechnol. 47: 33–39	
		Honeybee olfactory protein	200	Danty, E. et al. (1999) J. Neuroscience 19: 7468-7475	
		Mammalian proteins			
		Mouse gelatin	14,800	Werten, M.W. et al. (1999) Yeast 15: 1087-1096	
		Porcine carboxypeptidase B	200	Ventura, S. et al. (1999) J. Biol. Chem. 274: 19925-33	
		Human tumor necrosis factor	10,000	Sreekrishna, K. et al. (1989) Biochemistry 28: 4117-4125	
		Human IGF-1	600	Brierley, R.A. (1998) Methods Mol. Biol. 103: 149–177	
		Human CD38	455	Munshi, C.B. (1997) Methods Enzymol. 280: 318–330	
		15N-Interferon τ	10	Johnson, T.M. et al. (1999) J. Interferon Cytokine Res. 19: 631-636	

Baculovirus Expression system

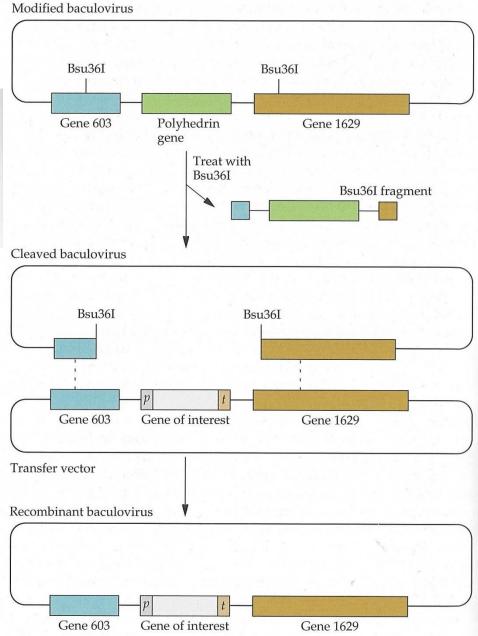
Autographa californica nuclear polyhedrosis virus (AcNPV)



Heterologous genes are cloned into transfer vectors Co-transfection of the transfer vector and AcNPV DNA into *Spodoptera frugiperda* (*Sf*) cells \rightarrow recombination between homologous sites

https://www.bdbiosciences.com/documents/Baculovirus_vector_system_manual.pdf

Baculovirus Expression System


Transfer of a target gene to the Baculovirus expression vector by forced recombination between a transfer vector and BacPAK6 viral DNA.

http://www.clontech.com/AT/Products/Protein_Expression_and_Purification/Baculovirus_Expression

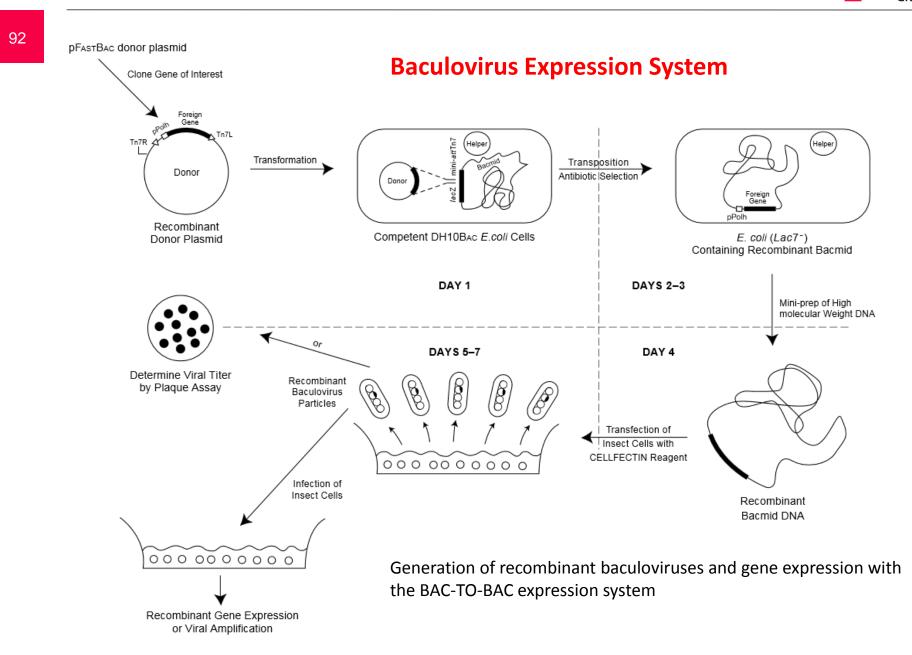
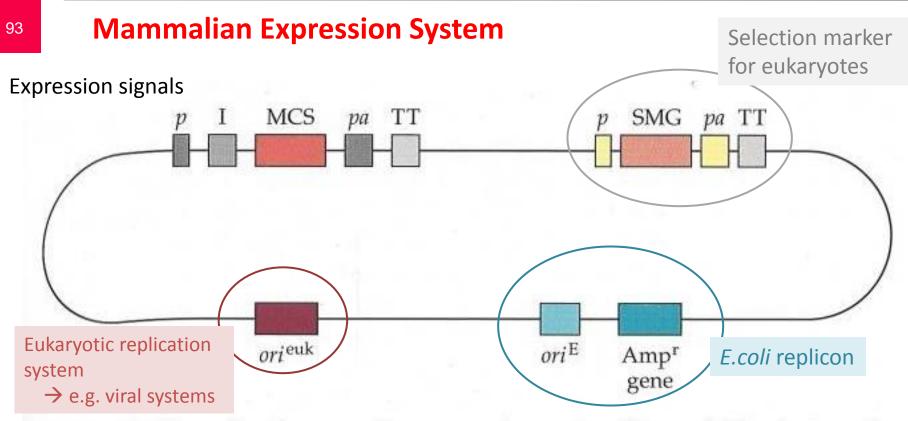


FIGURE 7.18 Production of recombinant baculovirus. Single Bsu36I sites are engineered into gene 603 and a gene (1629) that is essential for AcMNPV replication. These genes flank the polyhedrin gene in the AcMNPV genome. After a baculovirus with two engineered Bsu36I sites is treated with Bsu36I, the segment between the Bsu36I sites is deleted. Insect cells are cotransfected with a Bsu36I-treated baculovirus DNA and a transfer vector with a gene of interest under the control of the promoter (*p*) and terminator (*t*) elements of the polyhedrin gene and the complete sequences of both genes 603 and 1629. A double crossover event (dashed lines) generates a recombinant baculovirus with a functional gene 1629. With this system, almost all of the progeny baculoviruses are recombinant.

Baculovirus Expression System



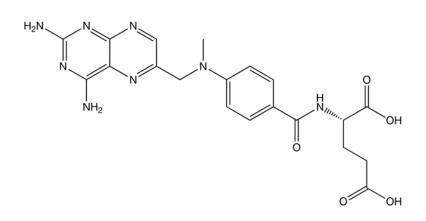
Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

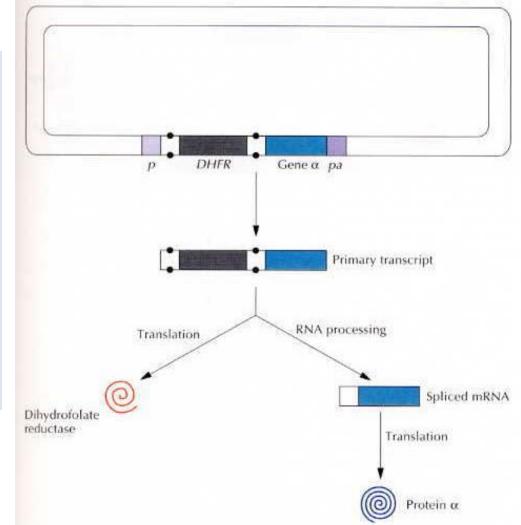
https://tools.lifetechnologies.com/content/sfs/manuals/bevtest.pdf

FIGURE 7.23 Generalized mammalian expression vector. The multiple cloning site (MCS) and selectable marker gene (SMG) are under the control of eukaryotic promoter (*p*), polyadenylation (*pa*), and termination of transcription (TT) sequences. An intron (I) enhances the production of heterologous protein. Propagation of the vector in *E. coli* and mammalian cells depends on the origins of replication *ori*^E and *ori*^{euk}, respectively. The ampicillin resistance (Amp^r) gene is used for selecting transformed *E. coli*.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

www.clontech.com


Expression strategies for mammalians


Selection needed in order to find clones positioned at transcriptionactive sites

DHFR:

Selection for high expression with methotrexate

→ Incresed resistance to methodrexate: high probability of high expression of targed protein

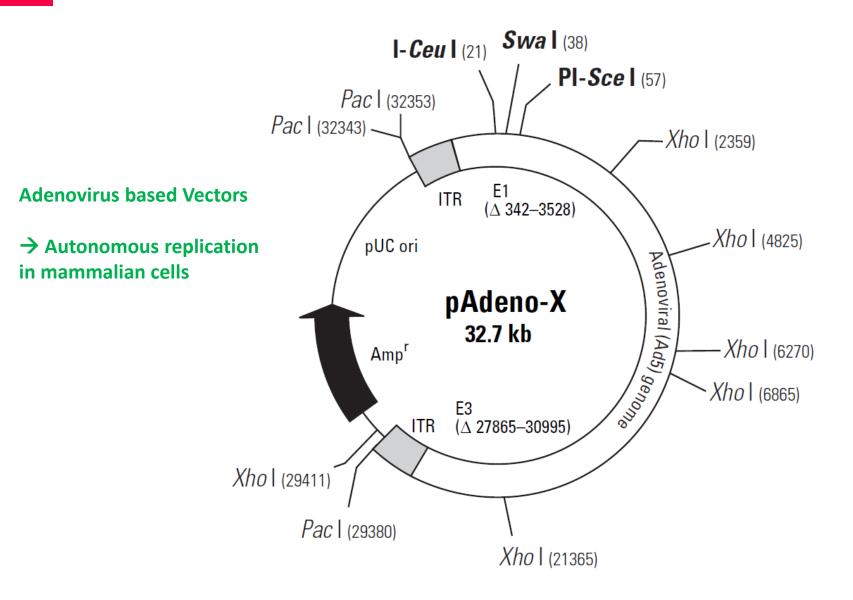
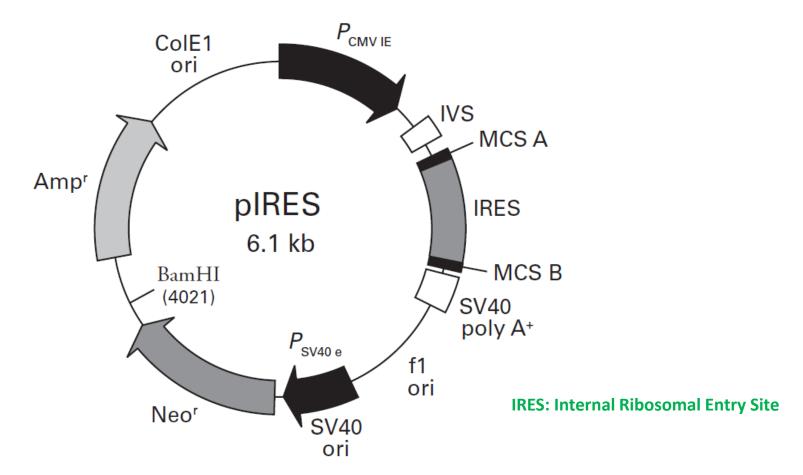
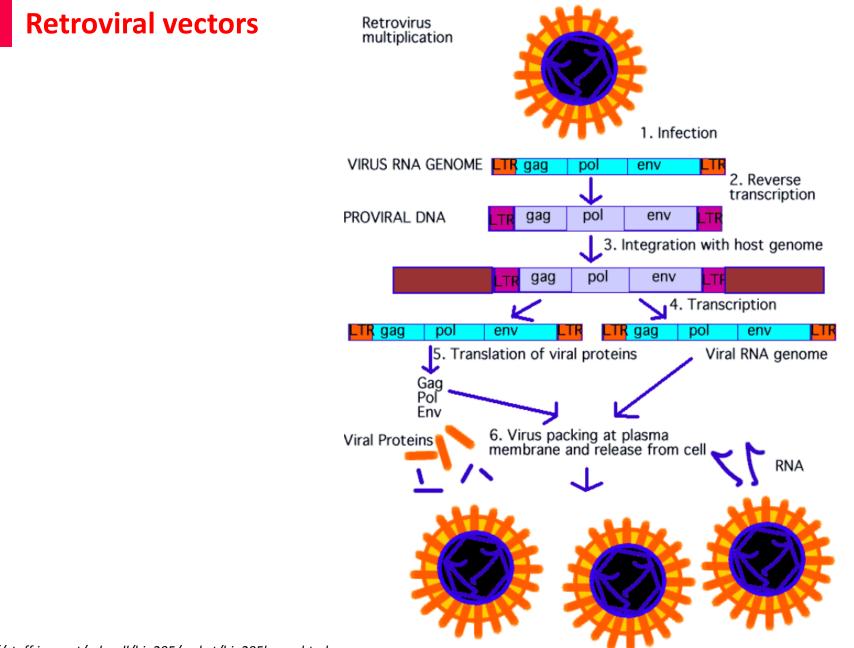


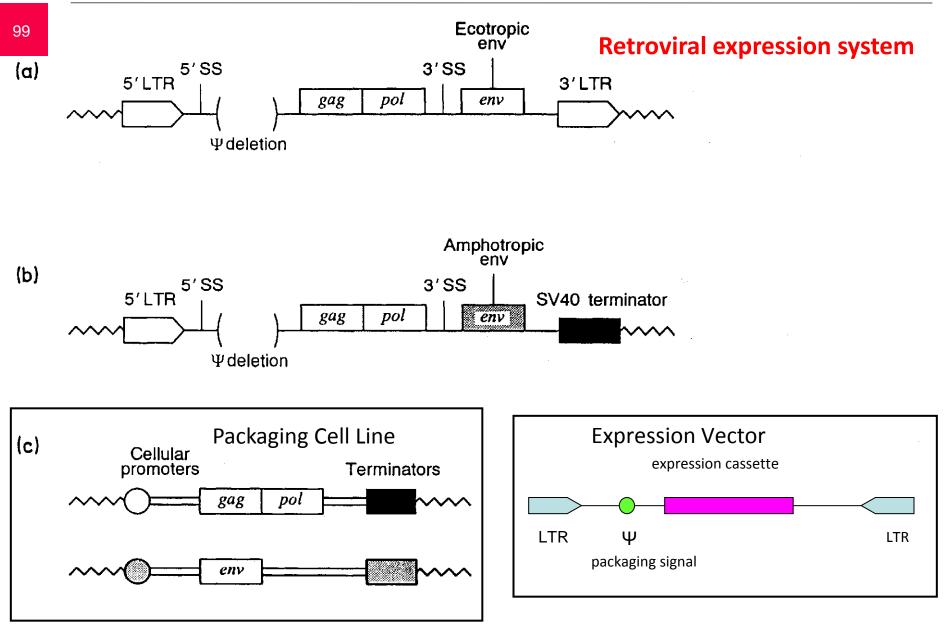
Figure 7.14 Coordinated expression of DHFR and a recombinant protein. A *DHFR* gene is cloned between intron donor and acceptor splice sites (dots) and upstream from a cloned gene (gene α). Both the *DHFR* and cloned genes are under the control of eukaryotic promoter (p) and polyadenylation (pa) sequences. Dihydrofolate reductase and the heterologous protein (protein α) are translated from the unspliced (primary) and processed (spliced) transcripts, respectively.

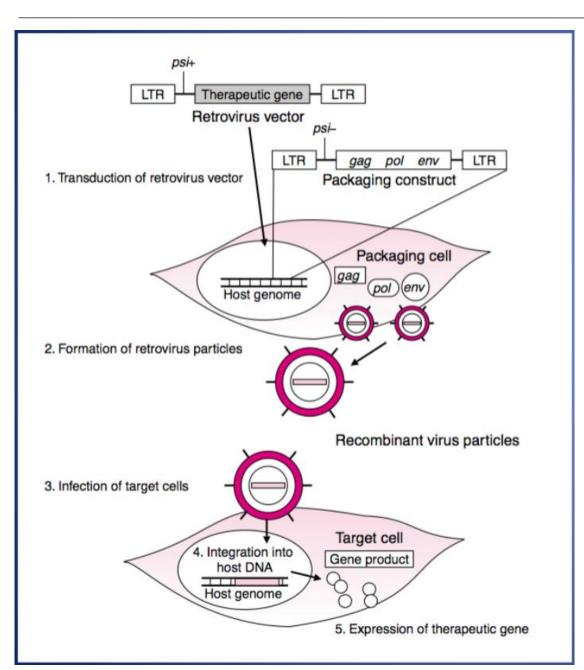


96 Mammalian Expression System

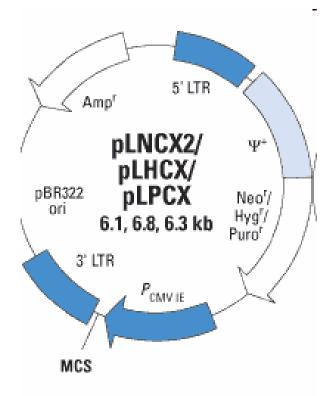


97 Mammalian Expression System


pIRES is a mammalian expression vector that allows high level expression of two genes of interest from the same bicistronic mRNA transcript. The vector contains the encephalomyocarditis virus (ECMV) internal ribosome entry site (IRES) flanked by two multiple cloning sites (MCS A and B), an arrangement that allows cap-independent translation of the gene cloned into MCS B (1–3). pIRES utilizes a partially disabled IRES sequence that reduces the rate at which the gene cloned into MCS B is translated relative to that of MCS A.

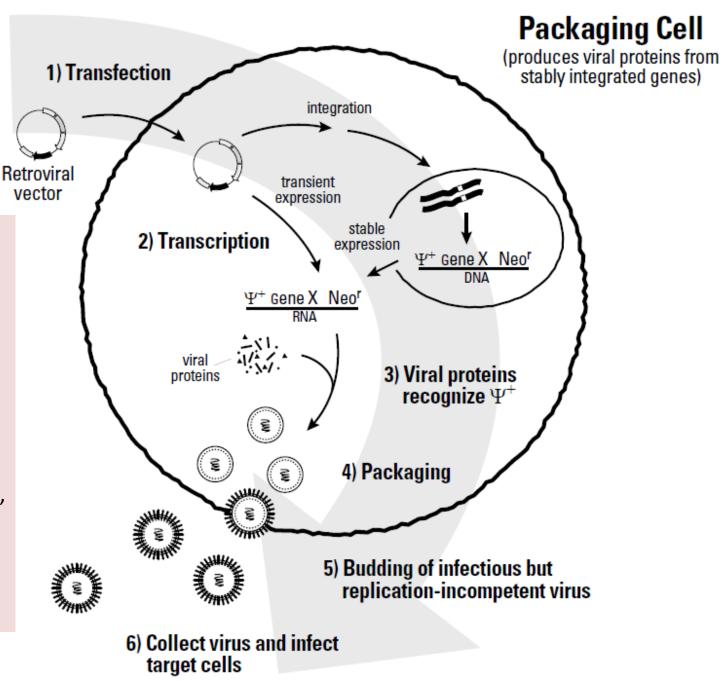

http://staff.jccc.net/pdecell/bio205/webct/bio205home.html

Recombinant retroviral genomes in packaging cell lines

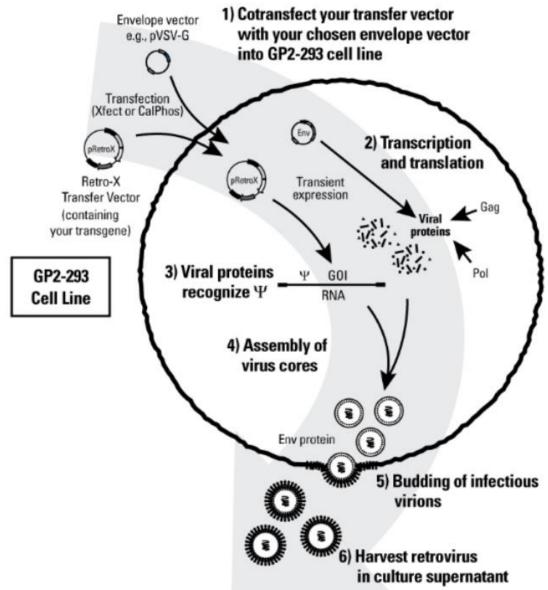

Recombinant Retroviruses

- Can be pseudotyped with various env proteins to broaden tropism
- Stable packaging cells
- Long-term gene expression through integration
- Downside is insertional mutagenesis
- Disadvantage is only infects dividing cells

http://www.ohsu.edu/xd/about/services/integrity/upload/IBC_Presentation-Choosing-a-Viral-Vector-System.pdf



Schematic of LRCX Vectors


www.clontech.com

Virus production in packaging cell lines.

The gag, pol and env genes required for viral production are integrated into the packaging cells genome. The vector provides the viral packaging signal, commonly denoted Ψ +, a target gene, and drug-resistance marker.

Step 1: Cotransfect GP2-293 cells with the Retro-X vector containing your gene of interest (GOI) and an envelope plasmid such as pVSV-G

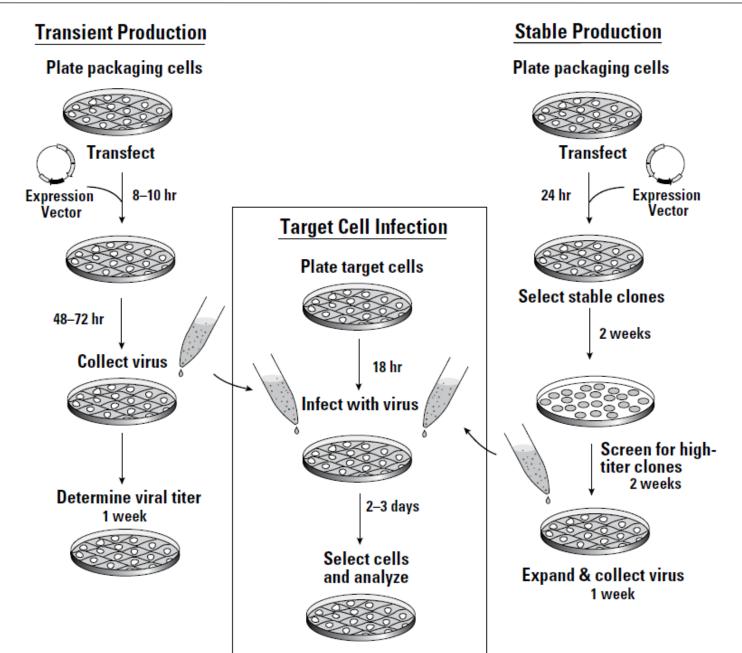
Step 2: Resulting production of the corresponding recombinant retroviral genome and viral packaging proteins. GP2-293 Cells express gag and pol from genomic locations

Step 3: Recognition of the packaging sequence (Ψ) on the recombinant viral RNA genome by the packaging proteins.

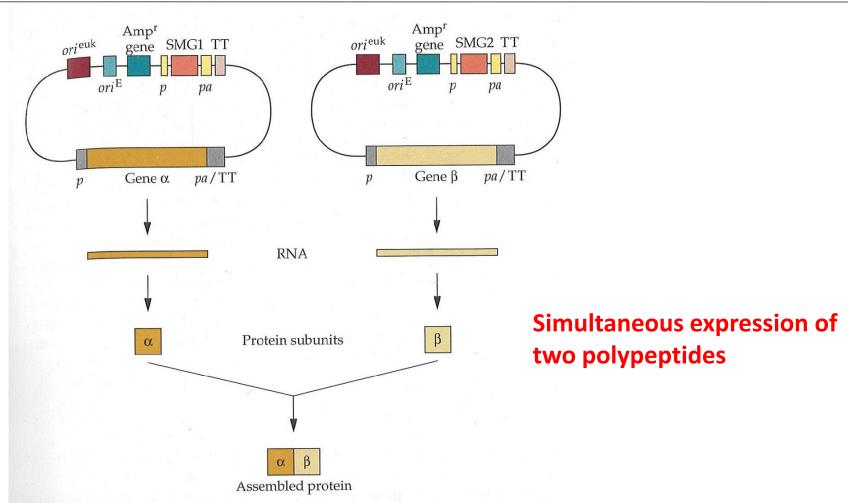
Step 4: Resulting assembly of viral cores, which are transported to the cell membrane.

Step 5: Cores are then enveloped by cellular membrane containing aggregated VSV-G or other envelope proteins. Mature, infectious virions then bud from the cell.

Step 6: Infectious virions are collected in the medium.


NOTE: Although the virions are infectious, they lack several critical genes required for their subsequent replication and production in target cells. Separating the viral proteins and supplying them *in trans* adds a strong measure of safety to virus production, since several low-frequency recombination events would need to occur in order to regenerate a replication-competent viral genome.

Cell Line	GP2-293	Ampho- Pack-293	EcoPack 2-293	RetroPack PT67
Cat. Nos.	631530, 631512	631505 HEK 293 Amphotropic	631507	631510 NIH/3T3 Dualtropic
Cell line origin	HEK 293		HEK 293 Ecotropic	
Tropism	Pantropic, ecotropic, amphotropic, dualtropic			
Envelopes	VSV-G, ampho, eco, or 10A1	4170A (ampho)	gap70 (eco)	10A1
Target cells	Wide range of mammalian/ non-mammalian cells	Wide range of mammalian cells	Mouse, rat cells	Wide range of mammalia cells


Table 2:	Tropisms /	Associated	with Commonly	Used Retrovir	al Envelopes
Envelope		VSV-G	4070A (Ampho)	gap70 (Eco)	10A1 (Dual)
Tropism		Pantropic	Amphotropic	Ecotropic	Dualtropic
Receptor (target cell)		Unknown ^b	RAM1 (Pit2)	mCAT-1	GALV (Pit1), RAM1 (Pit2)
	Human	+	+	-	+
	Mouse	+	+	+	+
	Rat	+	+	+	+
	Hamster	+	+/-	-	+
Possible	Cat	+	+	-	+
target cell types ^a	Dog	+	+	-	+
cen types	Monkey	+	+	-	+
	Avian	+	-	-	-
	Fish	+	-	_	_
	Insect	+	-	-	-

www.clontech.com

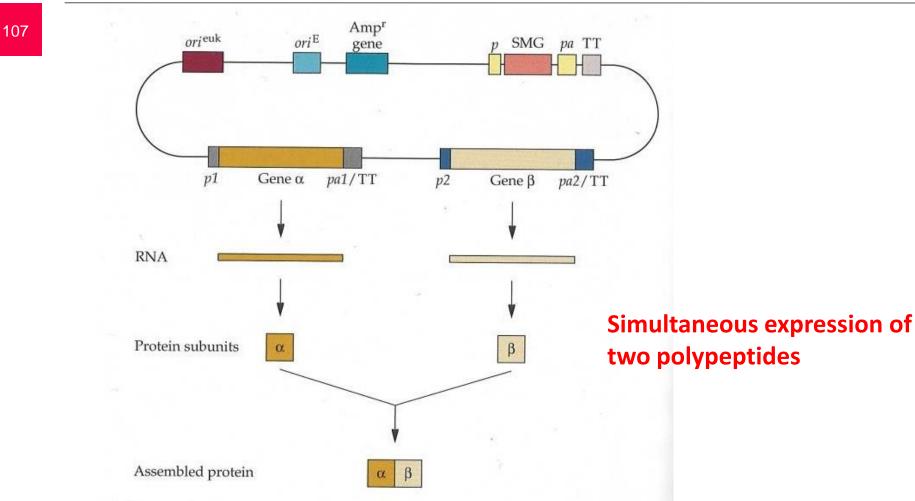


FIGURE 7.25 Two-vector expression system. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). After cotransfection, both subunits (α and β) are synthesized and assembled into a functional protein dimer. Both vectors carry origins of replication for *E. coli* (ori^{E}) and mammalian cells (ori^{euk}) and a marker (Amp^r) gene for selecting transformed *E. coli*. The selectable marker genes (SMG1 and SMG2) and the cloned genes (gene α and gene β) are each under the control of promoter (*p*), polyadenylation (*pa*), and termination of transcription (TT) sequences.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

MOL.911 Molecular Biotechnology I

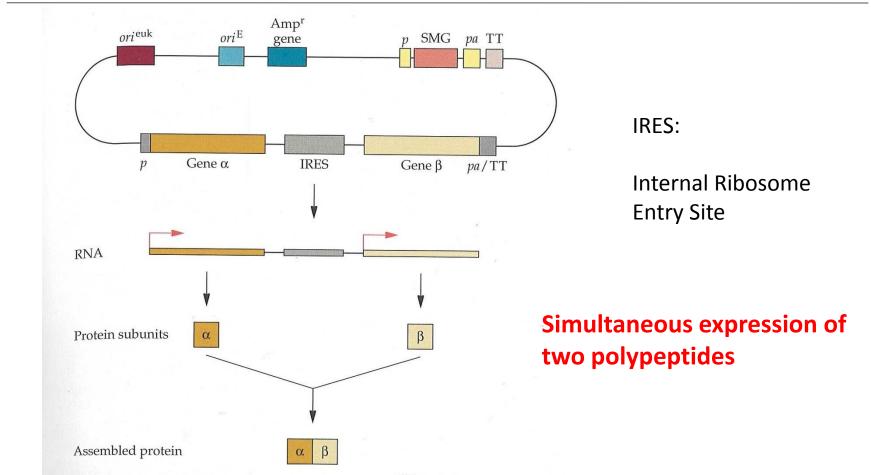


FIGURE 7.26 Two-gene expression vector. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). The cloned genes are inserted into a vector and are under the control of different eukaryotic promoter (p), polyadenylation (pa), and termination of transcription (TT) sequences. Each subunit is translated from a separate mRNA, and a functional protein dimer ($\alpha\beta$) is assembled. The vector has origins of replication for *E. coli* (ori^{E}) and mammalian cells (ori^{euk}), a marker gene (Amp^r) for selecting transformed *E. coli*, and a selectable marker gene (SMG) that is under the control of eukaryotic promoter (p), polyadenylation (pa), and termination of transcription (TT) sequences.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press MOL.911 Molecular Biotechnology I

108

FIGURE 7.27 Bicistronic expression vector. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). Each cloned gene is inserted into a vector on either side of a sequence for an IRES. The two genes and the IRES sequence form a transcription unit under the control of a single eukaryotic promoter (p), polyade-nylation (pa), and termination of transcription (TT) sequence. Translation of the mRNA occurs from the 5' end and internally (right-angled arrows). Both subunits (α and β) are synthesized and assembled into a functional protein dimer ($\alpha\beta$). The vector carries origins of replication for *E. coli* (ori^{E}) and mammalian cells (ori^{euk}), a selectable marker (Amp^r) for selecting transformed *E. coli*, and a selectable marker gene (SMG) that is under the control of eukaryotic promoter (p), polyadenylation (pa), and termination of transcription (TT) sequences.

Taken from: B.R. Glick, J.J. Pasternak, C.L. Patten; Molecular Biotechnology, 4th Ed.; ASM Press

¹⁰⁹ 3.12.15